Skip to main content

Efficient Transductive Online Learning via Randomized Rounding

  • Chapter
  • First Online:
Empirical Inference

Abstract

Most traditional online learning algorithms are based on variants of mirror descent or follow-the-leader. In this chapter, we present an online algorithm based on a completely different approach, tailored for transductive settingsTransductive setting—( Transductive online learning—(, which combines “random playout” and randomized rounding of loss subgradients. As an application of our approach, we present the first computationally efficient online algorithm for collaborative filtering with trace-norm constrained matrices. As a second application, we solve an open question linking batch learning and transductive online learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, we divide the rounds into r consecutive epochs, such that epoch i consists of 2i rounds, and use Theorem 16.3 with confidence \(\delta \prime =\delta /{2}^{i+1}\), and a union bound, to get a regret bound of \(\mathcal{O}(\mathcal{R}_{{2}^{i}}(\mathcal{F}) + \sqrt{\left (i +\log (1/\delta ) \right ) {2}^{i}})\) over any epoch i. In the typical case where \(\mathcal{R}_{T}(\mathcal{F}) = \mathcal{O}(\sqrt{T})\), summing over i = 1, , r where \(r =\log _{2}(T + 1) - 1\) yields a total regret bound of order \(\mathcal{O}(\sqrt{\log (T/\delta )T})\). Up to log factors, this is the same bound as if T were known in advance.

  2. 2.

    Formally, at each step t: (1) the adversary chooses and reveals the next element π t of the permutation; (2) the forecaster chooses \(p_{t} \in \mathcal{P}\) and simultaneously the adversary chooses \(y_{t} \in \mathcal{Y}\).

  3. 3.

    This fact appears in an implicit form in [9]; see also [8, Exercise 8.4].

References

  1. Abernethy, J., Warmuth, M.: Repeated games against budgeted adversaries. In: NIPS, Vancouver (2010)

    Google Scholar 

  2. Abernethy, J., Bartlett, P., Rakhlin, A., Tewari, A.: Optimal strategies and minimax lower bounds for online convex games. In: COLT, Montreal (2009)

    Google Scholar 

  3. Bach, F.: Consistency of trace-norm minimization. J. Mach. Learn. Res. 9, 1019–1048 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. In: COLT, Amsterdam (2001)

    Google Scholar 

  5. Ben-David, S., Kushilevitz, E., Mansour, Y.: Online learning versus offline learning. Mach. Learn. 29(1), 45–63 (1997)

    Article  MATH  Google Scholar 

  6. Ben-David, S., Pál, D., Shalev-Shwartz, S.: Agnostic online learning. In: COLT, Montreal (2009)

    Google Scholar 

  7. Blum, A.: Separating distribution-free and mistake-bound learning models over the Boolean domain. SIAM J. Comput. 23(5), 990–1000 (1994)

    Article  MathSciNet  Google Scholar 

  8. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  9. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D., Schapire, R., Warmuth, M.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Trans. Inf. Theory 50(9), 2050–2057 (2004)

    Article  MathSciNet  Google Scholar 

  11. Chung, T.: Approximate methods for sequential decision making using expert advice. In: COLT, New Brunswick (1994)

    Google Scholar 

  12. Dudley, R.M.: A Course on Empirical Processes, École de Probabilités de St. Flour, 1982. Lecture Notes in Mathematics, vol. 1097. Springer, Berlin (1984)

    Google Scholar 

  13. Foygel, R., Salakhutdinov, R., Shamir, O., Srebro, N.: Learning with the weighted trace-norm under arbitrary sampling distributions. In: NIPS, Granada (2011)

    Google Scholar 

  14. Hazan, E.: The convex optimization approach to regret minimization. In: Nowozin, S., Sra, S., Wright, S. (eds.) Optimization for Machine Learning. MIT, Cambridge (2012)

    Google Scholar 

  15. Hazan, E., Kale, S., Shalev-Shwartz, S.: Near-optimal algorithms for online matrix prediction. In: COLT, Edinburgh (2012)

    Google Scholar 

  16. Kakade, S., Kalai, A.: From batch to transductive online learning. In: NIPS, Vancouver (2005)

    Google Scholar 

  17. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD, Paris (2009)

    Google Scholar 

  18. Lee, J., Recht, B., Salakhutdinov, R., Srebro, N., Tropp, J.: Practical large-scale optimization for max-norm regularization. In: NIPS, Vancouver (2010)

    Google Scholar 

  19. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: random averages, combinatorial parameters, and learnability. In: NIPS, Vancouver (2010)

    Google Scholar 

  20. Rakhlin, A., Shamir, O., Sridharan, K.: Relax and localize: from value to algorithms. CoRR abs/1204.0870 (2012)

    Google Scholar 

  21. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, Vancouver (2007)

    Google Scholar 

  22. Salakhutdinov, R., Srebro, N.: Collaborative filtering in a non-uniform world: learning with the weighted trace norm. In: NIPS, Vancouver (2010)

    Google Scholar 

  23. Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends Mach. Learn. 4(2), 107–194 (2012)

    Article  Google Scholar 

  24. Shamir, O., Shalev-Shwartz, S.: Collaborative filtering with the trace norm: learning, bounding, and transducing. In: COLT, Budapest (2011)

    Google Scholar 

  25. Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: COLT, Bertinoro (2005)

    Google Scholar 

  26. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. In: NIPS, Vancouver (2004)

    Google Scholar 

  27. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges partial support by the PASCAL2 NoE under EC grant FP7-216886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Cesa-Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cesa-Bianchi, N., Shamir, O. (2013). Efficient Transductive Online Learning via Randomized Rounding. In: Schölkopf, B., Luo, Z., Vovk, V. (eds) Empirical Inference. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41136-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41135-9

  • Online ISBN: 978-3-642-41136-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics