Skip to main content

Use of Tracer Kinetic Model-Driven Biomarkers for Monitoring Antiangiogenic Therapy of Hepatocellular Carcinoma in First-Pass Perfusion CT

  • Conference paper
Abdominal Imaging. Computation and Clinical Applications (ABD-MICCAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8198))

  • 1760 Accesses

Abstract

Development of vascularly targeted anti-cancer therapies has led to an interest in determining the in vivo effectiveness of anti-tumor agents in patients. As the antiangiogenic agents may have significant effects without causing tumor shrinkage, their microcirculatory characteristics have the potential to be response biomarkers. Perfusion CT (PCT) studies can quantify the microcirculatory status of liver tumors, and can be used for assessing the effectiveness of antiangiogenic therapy. Our purpose in this study was to compare five different tracer kinetic models for the analysis of first-pass hepatic PCT data, to investigate whether kinetic parameters differ in significance among different kinetic models, and to select the best single prognostic biomarker with respect to the prediction of 6-month progression-free survival (PFS) of patients with advanced hepatocellular carcinoma (HCC). The first-pass PCT was performed at baseline and on days 10 to 12 after initiation of antiangiogenic treatment. The PCT data were analyzed retrospectively by the Tofts-Kety (TK), extended TK (ETK), two-compartment exchange (2CX), adiabatic approximation to tissue homogeneity (AATH), and distributed parameter (DP) models. Kinetic parameters consisted of blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability-surface area product (PS), mean values of which within HCC were compared between baseline and post-treatment by the Wilcoxon signed-rank test. Baseline mean kinetic parameters within HCC and relative percent changes (%changes) in the mean and standard deviation (SD) from baseline to post-treatment were also compared in terms of PFS discrimination by use of Spearman correlation analysis. After treatment, the changes in the kinetic parameter values were significantly different among models. The results suggested that the %change of SD for BV is an effective prognosis biomarker, potentially reflecting that treatment-induced change of vascular heterogeneity plays a role in the assessment of the HCC response. Based on the predictive ranking of a single biomarker, the AATH model was the best predictor of 6-month PFS in the first-pass PCT analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal, A., Siegel, R., Xu, J., Ward, E.: Cancer Statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010)

    Article  Google Scholar 

  2. Kew, M.C., Dos Santos, H.A., Sherlock, S.: Diagnosis of Primary Cancer of the Liver. Br. Med. J. 4, 408–411 (1971)

    Article  Google Scholar 

  3. A New Prognostic System for Hepatocellular Carcinoma: A Retrospective Study of 435 Patients: The Cancer of the Liver Italian Program (CLIP) Investigators. Hepatology 28, 751–755 (1998)

    Google Scholar 

  4. Yamaguchi, R., Yano, H., Iemura, A., Ogasawara, S., Haramaki, M., Kojiro, M.: Expression of Vascular Endothelial Growth Factor in Human Hepatocellular Carcinoma. Hepatology 28, 68–77 (1998)

    Article  Google Scholar 

  5. Messerini, L., Novelli, L., Comin, C.E.: Microvessel Density and Clinicopathological Characteristics in Hepatitis C Virus and Hepatitis B Virus Related Hepatocellular Carcinoma. J. Clin. Pathol. 57, 867–871 (2004)

    Article  Google Scholar 

  6. Lee, T.Y., Purdie, T.G., Stewart, E.: CT Imaging of Angiogenesis. Q. J. Nucl. Med. 47, 171–187 (2003)

    Google Scholar 

  7. Miles, K.A.: Functional Computed Tomography in Oncology. Eur. J. Cancer 38, 2079–2084 (2002)

    Article  Google Scholar 

  8. Kan, Z., Kobayashi, S., Phongkitkarun, S., Charnsangavej, C.: Functional CT Quantification of Tumor Perfusion After Transhepatic Arterial Embolization in a Rat Model. Radiology 237, 144–150 (2005)

    Article  Google Scholar 

  9. Kambadakone, A.R., Sahani, D.V.: Body Perfusion CT: Technique, Clinical Applications, and Advances. Radiol. Clin. North Am. 47, 161–178 (2009)

    Article  Google Scholar 

  10. Jiang, T., Kambadakone, A., Kulkarni, N.M., Zhu, A.X., Sahani, D.V.: Monitoring Response to Antiangiogenic Treatment and Predicting Outcomes in Advanced Hepatocellular Carcinoma using Image Biomarkers, CT Perfusion, Tumor Density, and Tumor Size (RECIST). Invest. Radiol. 47, 11–17 (2012)

    Article  Google Scholar 

  11. Goh, V., Halligan, S., Bartram, C.I.: Quantitative Tumor Perfusion Assessment with Multidetector CT: Are Measurements from Two Commercial Software Packages Interchangeable? Radiology 242, 777–782 (2007)

    Article  Google Scholar 

  12. Koh, T.S., Ng, Q.S., Thng, C.H., Kwek, J.W., Kozarski, R., Goh, V.: Primary Colorectal Cancer: Use of Kinetic Modeling of Dynamic Contrast-Enhanced CT Data to Predict Clinical Outcome. Radiology 267, 145–154 (2013)

    Article  Google Scholar 

  13. Brix, G., Griebel, J., Kiessling, F., Wenz, F.: Tracer Kinetic Modelling of Tumour Angiogenesis Based on Dynamic Contrast-Enhanced CT and MRI Measurements. Eur. J. Nucl. Med. Mol. Imaging 37(suppl. 1), S30–S51 (2010)

    Google Scholar 

  14. Lee, S.H., Cai, W., Yoshida, H.: Tracer Kinetic Modeling by Morales-Smith Hypothesis in Hepatic Perfusion CT. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds.) Abdominal Imaging 2012. LNCS, vol. 7601, pp. 292–302. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Thompson Jr., H.K., Starmer, C.F., Whalen, R.E., McIntosh, H.D.: Indicator Transit Time Considered as a Gamma Variate. Circ. Res. 14, 502–515 (1964)

    Article  Google Scholar 

  16. Zhu, F., Carpenter, T., Rodriguez Gonzalez, D., Atkinson, M., Wardlaw, J.: Computed Tomography Perfusion Imaging Denoising using Gaussian Process Regression. Phys. Med. Biol. 57, N183–N198 (2012)

    Google Scholar 

  17. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Kitware, Inc., Clifton Park (2005)

    Google Scholar 

  18. Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J.: New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 45, 228–247 (2009)

    Article  Google Scholar 

  19. Sahani, D.V., Kalva, S.P., Hamberg, L.M., Hahn, P.F., Willett, C.G., Saini, S., Mueller, P.R., Lee, T.Y.: Assessing Tumor Perfusion and Treatment Response in Rectal Cancer with Multisection CT: Initial Observations. Radiology 234, 785–792 (2005)

    Article  Google Scholar 

  20. Zhang, Q., Yuan, Z.G., Wang, D.Q., Yan, Z.H., Tang, J., Liu, Z.Q.: Perfusion CT Findings in Liver of Patients with Tumor during Chemotherapy. World J. Gastroenterol. 16, 3202–3205 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, S.H., Hayano, K., Sahani, D., Yoshida, H. (2013). Use of Tracer Kinetic Model-Driven Biomarkers for Monitoring Antiangiogenic Therapy of Hepatocellular Carcinoma in First-Pass Perfusion CT. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41083-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41082-6

  • Online ISBN: 978-3-642-41083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics