Skip to main content

Grid Integration of Wind Power Systems: Modeling of Wind Power Plants

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

  • 4014 Accesses

Abstract

In the United States, wind power is expected to make up a significant portion of future generation portfolios. A scenario in which wind power will supply 20 % of U.S. peak demand by 2030 has been examined and found feasible [1]. A challenge facing power system planners and operators, in the near future, is the grid integration of large amounts of wind power. To determine the impacts of large wind power plants on system stability, reliable computer models are necessary. However, wind turbine models are not readily available in most dynamic simulation software. The diversity and manufacturer-specific nature of technologies used in commercial wind turbines exacerbates the modeling problem. A solution to this problem is to develop a generic, manufacturer-independent modeling framework that can be implemented in any software capable of simulating power system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 20 % Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply, U.S. D.O.E., July 2008

    Google Scholar 

  2. Ackermann T (ed) (2005) Wind power in power systems. Wiley, New York

    Google Scholar 

  3. Hansen AD, Hansen LH (2007) Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy 10(1):81–97 (Wiley Online Library)

    Article  Google Scholar 

  4. Slootweg JG, Polinder H, Kling WL (2001) Dynamic modeling of a wind turbine with doubly fed induction generator. In: Proceedings of 2001 power engineering society summer meeting, 2001. IEEE, vol 1. pp. 644–649

    Google Scholar 

  5. Uctug MY, Eskandarzadeh I, Ince H (1994). Modeling and output power optimization of a wind turbine driven double output induction generator. Electric power applications, IEE proceedings, vol 141. pp 33–38

    Google Scholar 

  6. Kim S-K, Kim E-S, Yoon J-Y, Kim H-Y (2004) PSCAD/EMTDC based dynamic modeling and analysis of a variable speed wind turbine. In: Proceedings of 2004 power engineering society general meeting, 2004. IEEE, vol 2. pp 1735–1741

    Google Scholar 

  7. Slootweg JG, Kling WL (2003) Aggregated modeling of wind parks in power system dynamics simulations. In: Proceedings of 2003 power tech conference proceedings, 2003 IEEE Bologna, vol 3. p 6

    Google Scholar 

  8. Delaleau E, Stankovic AM, Dynamic phasor modeling of the doubly-fed induction machine in generator operation. www.ece.northeastern.edu/faculty/stankovic/Conf_papers/lsiwp03.pdf

  9. Gagnon R, Sybille G, Bernard S, Pare D, Casoria S, Larose C (2005) Modeling and real-time simulation of a doubly-fed induction generator driven by a wind turbine. www.ipst.org/TechPapers/2005/IPST05_Paper162.pdf

  10. Lubosny Z (2003) Wind turbine operation in electric power systems: advanced modeling. Springer, Berlin

    Book  Google Scholar 

  11. Akhmatov V (2005) Induction generators for wind power. Multiscience Publishing Company, Essex, UK

    Google Scholar 

  12. Manwell JF, McGowan JG, Rogers AL (2003) Wind energy explained: theory design and applications. Wiley, New York England Reprinted with corrections August

    Google Scholar 

  13. Krause PC (1986) Analysis of electric machinery. McGraw Hill Co, New York

    Google Scholar 

  14. Burnham DJ, Santoso S, Muljadi E (2009) Variable rotor resistance control of wind turbine generators. In: Power and energy society general meeting, 2009. PES’ 09. IEEE, 26–30 July 2009

    Google Scholar 

  15. Hang CC, Astrom KJ, Ho WK (1991) Refinements of the Ziegler-Nichols tuning formula. Control Theory and Applications, IEE Proceedings D, vol 138, No. 2

    Google Scholar 

  16. E. Muljadi and C.P. Butterfield, Pitch-controlled variable-speed wind turbine generation. In: Industry applications conference, 1999. Thirty-fourth IAS annual meeting. conference record of the 1999 IEEE, vol 1. pp 323–330. 3–7 October 1999

    Google Scholar 

  17. Singh M, Santoso S (2007) Electromechanical and time-domain modeling of wind generators. Power engineering society general meeting, 2007. IEEE, 24–28 June 2007

    Google Scholar 

  18. Singh M, Faria K, Santoso S, Muljadi E (2009) Validation and analysis of wind power plant models using short-circuit field measurement data. Power & energy society general meeting, 2009. PES ‘09. IEEE, 26–30 July 2009

    Google Scholar 

  19. Santoso S, Hur K, Zhou Z (2006) Induction machine modeling for distribution system analysis—A time domain solution. Transmission and distribution conference and exhibition, 2005/2006 IEEE PES, pp 583–587. 21–24 May 2006

    Google Scholar 

  20. Muljadi E, Butterfield CP, Ellis A, Mechenbier J, Hochheimer J, Young R, Miller N, Delmerico R, Zavadil R, Smith JC (2006) Equivalencing the collector system of a large wind power plant. IEEE power engineering society, annual conference, Montreal, Quebec, 2006 IEEE PES

    Google Scholar 

  21. Muljadi E, Pasupulati S, Ellis A, Kosterov D (2008) Method of equivalencing for a large wind power plant with multiple turbine representation. In: 2008 IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st century

    Google Scholar 

  22. Muljadi E, Ellis A (2008) Validation of wind power plant dynamic models. IEEE power engineering society general meeting, Pittsburgh, 20–24 July 2008

    Google Scholar 

  23. Muljadi E, Butterfield CP, Parsons B, Ellis A (2007) Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans Energy Conversion 22(1):29–36

    Article  Google Scholar 

  24. Muljadi E, Nguyen TB, Pai MA (2008) Impact of wind power plants on voltage and transient stability of power systems. In: Energy 2030 conference, 2008. ENERGY 2008. IEEE, 17–18 Nov 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Santoso .

Editor information

Editors and Affiliations

Appendix

Appendix

Machine Specifications

Poles

6

Rated voltage (l–l)

690 V

Rated power

1.8 MVA

Base angular frequency

376.99 rad/s

Stator/rotor turns ratio

0.379

Angular moment of inertia

0.578 s

Stator rotor resistance

0.0054 p.u.

Wound rotor resistance

10−6 p.u.

Magnetizing inductance

6.83309 p.u.

Stator leakage inductance

0.08 p.u.

Rotor leakage inductance

0.04782 p.u.

Mechanical Data for Shaft Model

J rot Rotor moment of inertia (kg mm)

J rot  = 4,950,000 kg mm

J gen Generator moment of inertia (kg mm)

J gen  = 80

J q2 Gearbox moment of inertia (kg mm)

J q2 = 15 kg mm

K rq1 Spring constant rotor shaft (Nm/rad)

K rq1 = 9,800,000 Nm/rad

K q2g Spring constant generator shaft (Nm/rad)

K q2g  = 2,950,000 Nm/rad

D rot Damping rotor (Nms/rad)

D rot  = 0 Nms/rad

D rot Damping gearbox (Nms/rad)

D q2 = 2.4 Nms/rad

D rot Damping generator (Nms/rad)

D gen  = 0 Nms/rad

D rot Damping rotor shaft (Nms/rad)

D rq1 = 13,500 Nms/rad

D rot Damping generator shaft (Nms/rad)

D q2g  = 30 Nms/rad

f n Nominal frequency (Hz)

f n  = 60 Hz

P gn Nominal mechanical power (MW)

P gn  = 1.5 MW

a Gear ratio

a = 70

p Generator pole pairs

p = 3

Nomenclature

λ r

Tip speed ratio

ρ

Air density

λ

Flux linkage

f

Frequency

P

Real power

Q

Reactive power

V

Voltage

I

Current

L

Inductance

R

Resistance

β

Pitch angle of blades

β 0

Initial Pitch angle of blades

β q

Angle measured from the positive stationary a-phase axis to the rotating q-axis

ω

Angular velocity

τ

Torque

J

Moment of Inertia

B

Damping constant

K

Shaft stiffness

N

Gear ratio

θ

Twist in shaft

Superscripts and Subscripts

Parameter referred to stator

s

Stator quantity

r

Rotor quantity

d

d-axis quantity

q

q-axis quantity

abc

Parameter in abc reference frame

qd0

Parameter in qd0 reference frame

l

Leakage quantity (used with inductance)

m

Mutual quantity (used with inductance)

rms

Root mean square quantity

ph

Phase quantity

1ϕ

Single-phase quantity

3ϕ

Three-phase quantity

G, gen

Generator

T, rot

Rotor

eqv

Equivalent value (generator and rotor combined)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vyas, M., Singh, M., Santoso, S. (2013). Grid Integration of Wind Power Systems: Modeling of Wind Power Plants. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics