Skip to main content

Hydrogen Generation

  • Chapter
  • First Online:
Alternative Energies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 34))

Abstract

The idea of an economy supported by hydrogen is still being considered by government bodies and major oil companies. The extensive use of hydrogen as a fuel has many applications in pollution-free technologies which could be of every-day use in society. Examples are in transportation and power generation; other uses include chemical technology, metallurgy, effluent processing and water production. For mass application the most appropriate process for hydrogen production is water electrolysis. To this end, a simplified description of the hydrogen and oxygen evolution mechanisms is presented. Understanding these mechanisms will provide a basis for making water electrolysis more efficient. For this reason special attention is given to the design of catalysts for water electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bockris, J.O.M.: The Solar-hydrogen Alternative. Architectural Press, London (1975)

    Google Scholar 

  2. Meadows, D.H., Meadows, D.L., Randers, J., Behrens, W.W.: The Limits to Growth. Universe Books, New York (1972)

    Google Scholar 

  3. Hubbert, M.K.: Resources and Man. W.H Freeman, San Francisco (1969)

    Google Scholar 

  4. The Hydrogen Economy.: The National Academies Press, Washington, D.C (2004)

    Google Scholar 

  5. Colton, W.M.: The Outlook for Energy a view to 2030. Exxon Mobil Corporation (2011)

    Google Scholar 

  6. Voser, P.: Shell Energy Scenarios to 2050—Signals and Signposts. Royal Dutch Shell plc (2011)

    Google Scholar 

  7. Grundy, P.: Shell Energy Scenarios to 2050—Energy. Royal Dutch Shell plc (2011)

    Google Scholar 

  8. Dudley, B.: BP Energy Outlook 2030. BP plc (2011)

    Google Scholar 

  9. Lide, D.R.: The Elements. CRC Handbook of Chemistry and Physics. 86th edn. CRC Press, New York (2005)

    Google Scholar 

  10. Needham, S.: The Potential for Renewable Energy to Provide Baseload Power in Australia. Parliament of Australia, Commonwealth of Australia (2011)

    Google Scholar 

  11. El-Moneim, A.A., Bhattarai, J., Kato, Z., Izumiya, K., Kumagai, N., Hashimoto, K.: Mn-Mo-Sn oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. ECS Trans. 25, 127–137 (2009)

    Google Scholar 

  12. Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M.: Modern Electrochemistry. vol. 2A. 2nd edn. Kluwer Academic/Plenum Publishers, New York (2000)

    Google Scholar 

  13. Millet, P., Ngameni, R., Grigoriev, S.A., Mbemba, N., Brisset, F., Ranjbari, A., Etievant, C.: PEM water electrolyzers: from electrocatalysis to stack development. Int. J. Hydrogen Energy 35, 5043–5052 (2010)

    Article  Google Scholar 

  14. Jackson, T.: XI.13 High-efficiency, ultra-high pressure electrolysis with direct linkage to photovoltaic arrays (Phase II Project) (2005)

    Google Scholar 

  15. Dresselhaus, M.: Basic research needs for the hydrogen economy (2003)

    Google Scholar 

  16. Brown, D.E., Mahmood, M.N., Man, M.C.M., Turner, A.K.: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 29, 1551–1556 (1984)

    Article  Google Scholar 

  17. Hashimoto, K., Sasaki, T., Meguro, S., Asami, K.: Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production. Mat. Sci. Eng. A-Struct. 375–377, 942–945 (2004)

    Article  Google Scholar 

  18. Chen, L., Lasia, A.: Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J. Electrochem. Soc. 138, 3321–3328 (1991)

    Article  Google Scholar 

  19. Vandenborre, H., Vermeiren, P., Leysen, R.: Hydrogen evolution at nickel sulphide cathodes in alkaline medium. Electrochim. Acta 29, 297–301 (1984)

    Article  Google Scholar 

  20. Yamashita, H., Yamamura, T., Yoshimoto, K.: The relation between catalytic ability for hydrogen evolution reaction and characteristics of nickel-tin alloys. J. Electrochem. Soc. 140, 2238–2243 (1993)

    Article  Google Scholar 

  21. Conway, B.E., Liu, T.-C.: Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediates states at the oxide film. Langmuir 6, 268–276 (1990)

    Article  Google Scholar 

  22. Birss, V.I.: Oxygen evolution at platinum electrodes in alkaline solutions. J. Electrochem. Soc. 133, 1621–1625 (1986)

    Article  Google Scholar 

  23. Hansen, H.A., Man, I.C., Studt, F., Abild-Pedersen, F., Rossmeisl, J.: Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12, 283–290 (2010)

    Article  Google Scholar 

  24. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J., Norskov, J.K.: Electrolysis of water on oxides surfaces. J. Electroanal. Chem. 607, 83–89 (2007)

    Article  Google Scholar 

  25. Matsumoto, Y., Sato, E.: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397–426 (1986)

    Article  Google Scholar 

  26. Bockris, J.O.M.: Kinetics of activation-controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 1956, 817–827 (1956)

    Article  Google Scholar 

  27. Krasilshchikov, A.I.: Intermediate stages of anodic oxygen evolution. Russ. J. Phys. Chem. 37, 273 (1963)

    Google Scholar 

  28. Wade, W.H., Hackerman, N.: Anodic phenomena at an iron electrode. Trans. Faraday Soc. 53, 1636–1647 (1957)

    Article  Google Scholar 

  29. O’Grady, W., Iwakura, C., Huang, J., Yeager, E.: Ruthenium oxide catalysts for the oxygen electrode. In: Breiter, M.W. (ed.) Proceedings of Symposium Electrocatalyst, pp. 286–302 (1974)

    Google Scholar 

  30. O’Grady, W.E., Iwakura, C., Yeager, E.: Oxygen electrocatalysts for life support systems. Am. Soc. Mech. Eng. (76-ENAs-37), 11 (1976)

    Google Scholar 

  31. Bockris, J.O.M., Otagawa, T.: The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984)

    Article  Google Scholar 

  32. Kelly, E.J., Heatherly, D.E., Vallet, C.E., White, C.W.: Application of ion implantation to the study of electrocatalysis. I. Chlorine evolution at ruthenium-implanted titanium electrodes. J. Electrochem. Soc. 134, 1667–1675 (1987)

    Article  Google Scholar 

  33. Trasatti, S., O’Gradey, W.E.: Properties and applications of ruthenium dioxide-based electrodes. Adv. Electroch. El. Eng. 1981, 177–261 (1981)

    Google Scholar 

  34. Trasatti, S.: Studies in physical and theoretical chemistry. vol. 11. Electrodes of conductive metallic oxides, Pt. A (1980)

    Google Scholar 

  35. Krishtalik, L.I.: Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes. Electrochim. Acta 26, 329–337 (1981)

    Article  Google Scholar 

  36. Hepel, T., Pollak, F.H., O’Grady, W.E.: Chlorine evolution and reduction processes at oriented single-crystal ruthenium dioxide electrodes. J. Electrochem. Soc. 133, 69–75 (1986)

    Article  Google Scholar 

  37. Kuznetsova, E., Krtil, P., Heyrovsky, J.: Parallel oxygen and chlorine evolution on iridium based oxides. Paper presented at the electrocatalysis: Present and future and ELCAT meeting, Alicante, Spain, 14–17 (2011)

    Google Scholar 

  38. Ghany, N.A.A., Kumagai, N., Meguro, S., Asami, K., Hashimoto, K.: Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochim. Acta 48, 21–28 (2002)

    Article  Google Scholar 

  39. Vondrak, J., Klapste, B., Velicka, J., Sedlarikova, M., Reiter, J., Roche, I., Chainet, E., Fauvarque, J.F., Chatenet, M.: Electrochemical activity of manganese oxide/carbon-based electrocatalysts. J. New Mat. Elect. Syst. 8, 209–212 (2005)

    Google Scholar 

  40. Gatt, P., Petrie, S., Stranger, R., Pace, R.J.: Rationalizing the 1.9 A crystal structure of photosystem II—a remarkable Jahn-Teller balancing act induced by a single proton transfer. Angew. Chem. Int. Ed. 51, 1–5 (2012)

    Google Scholar 

  41. Guizard, C., Princivalle, A.: Preparation and characterization of catalyst thin films. Catal. Today 146, 367–377 (2009)

    Article  Google Scholar 

  42. Djokic, S.S.: Modern Aspects of Electrochemistry, vol. 48. Springer, New York (2010)

    Google Scholar 

  43. Chen, Y.-C., Hsu, Y.-K., Lin, Y.-G., Lin, Y.-K., Horng, Y–.Y., Chen, L.-C., Chen, K.-H.: Highly flexible supercapacitors with manganese oxide nanoshhet/carbon cloth electrode. Electrochim. Acta 56, 7124–7130 (2011)

    Article  Google Scholar 

  44. Kawashima, A., Sakaki, T., Habazaki, H., Hashimoto, K.: Ni-Mo-O alloy cathodes for hydrogen evolution in hot concentrated NaOH solution. Mat. Chem. Eng. A 267, 246–253 (1999)

    Article  Google Scholar 

  45. Choquette, Y., Menard, H., Brossard, L.: Hydrogen discharge on a Raney nickel composite-coated electrode. Int. J. Hydrogen Energy 14, 637–642 (1989)

    Article  Google Scholar 

  46. Raush, S., Wendt, H.: Morphology and utilization of smooth hydrogen-evolving Raney nickel cathode coatings and porous sintered-nickel cathodes. J. Electrochem. Soc. 143, 2852–2862 (1996)

    Article  Google Scholar 

  47. Endoh, E., Otouma, H., Morimoto, T., Oda, Y.: New Raney nickel composite-coated electrode for hydrogen evolution. Int. J. Hydrogen Energy 12, 473–479 (1987)

    Article  Google Scholar 

  48. Paunovic, P.: Toward sustainable hydrogen economy: electrode materials-non-platinum electrocatalytic systems. J. Univ. Chem. Tech. Metall. 45, 149–160 (2010)

    Google Scholar 

  49. Jaksic, M.M., Lacnjevac, C.M., Grgur, B.N., Krstajic, N.V.: Volcano plots along intermetallic hypo-hyper-d-electronic phase diagrams and electrocatalysis for hydrogen electrode reactions. J. New Mat. Elect. Syst. 3, 169–182 (2000)

    Google Scholar 

  50. Paunovic, P., Popovski, O., Dimitrov, A., Slavkov, D., Lefterova, E., Jordanov, Sh: Improvement of performances of complex non-platinum electrode materials for hydrogen evolution. Electrochim. Acta 52, 1810–1817 (2006)

    Article  Google Scholar 

  51. Trasatti, S., Buzzanca, G.: Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behavior. J. Electroanal. Chem. 29, 1–2 (1971)

    Article  Google Scholar 

  52. Thompson, R.: The Modern Inorganic Chemicals Industry, vol. 31. London (1977)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank AINSE Ltd for providing financial assistance (Award No ALNGRA12020/10366 and AINSE Post Graduate Research Award 10595) to enable work on the catalyst surfaces. We would also like to acknowledge the technological support from ANSTO (Australian Nuclear Science and Technology Organization) and the grant provided by Australian Synchrotron (grant AS123/HRIR 5428A) for use of far infrared beamline.

The global R&D Centers Program of NRF (National Research Foundation of Korea), funded by MSIP (Ministry of Science, ICT & Future Planning) at KIGAM (Korean Institute of Geoscience and Mineral Resources) for instrument time. Special thanks to Dr. Danielle Meyrick, Dr. Justin McGinnity, Dr. Trevor Pryor, Dr. Kim D. J., Dr. Chung K. W., Dr. Mihail Ionescu, Dr. Gamini Senanayake and Sue Farr for their suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delgado, D., Hefter, G., Minakshi, M. (2013). Hydrogen Generation. In: Ferreira, G. (eds) Alternative Energies. Advanced Structured Materials, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40680-5_7

Download citation

Publish with us

Policies and ethics