Skip to main content

Labeling Examples That Matter: Relevance-Based Active Learning with Gaussian Processes

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

Active learning is an essential tool to reduce manual annotation costs in the presence of large amounts of unsupervised data. In this paper, we introduce new active learning methods based on measuring the impact of a new example on the current model. This is done by deriving model changes of Gaussian process models in closed form. Furthermore, we study typical pitfalls in active learning and show that our methods automatically balance between the exploitation and the exploration trade-off. Experiments are performed with established benchmark datasets for visual object recognition and show that our new active learning techniques are able to outperform state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms. JMLR 5, 255–291 (2004)

    MathSciNet  Google Scholar 

  2. Bernstein, D.S.: Matrix Mathematics, 2nd edn. Princeton University Press (2009)

    Google Scholar 

  3. Bodesheim, P., Rodner, E., Freytag, A., Denzler, J.: Divergence-based one-class classification using gaussian processes. In: BMVC, pp. 50.1–50.11 (2012)

    Google Scholar 

  4. Campbell, C., Cristianini, N., Smola, A.: Query learning with large margin classifiers. In: ICML (2000)

    Google Scholar 

  5. Cebron, N., Berthold, M.: Active learning for object classification: from exploration to exploitation. Data Mining and Knowledge Discovery 18, 283–299 (2009)

    Article  MathSciNet  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Ebert, S., Fritz, M., Schiele, B.: Ralf: A reinforced active learning formulation for object class recognition. In: CVPR, pp. 3626–3633 (2012)

    Google Scholar 

  8. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Machine Learning 28, 133–168 (1997)

    Article  MATH  Google Scholar 

  9. Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Rapid uncertainty computation with gaussian processes and histogram intersection kernels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 511–524. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. IJCV 88, 169–188 (2010)

    Article  Google Scholar 

  11. Kemmler, M., Rodner, E., Denzler, J.: One-class classification with gaussian processes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 489–500. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Osugi, T., Kim, D., Scott, S.: Balancing exploration and exploitation: a new algorithm for active machine learning. In: ICDM, pp. 330–337 (2005)

    Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press (2006)

    Google Scholar 

  14. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: ICML, pp. 441–448 (2001)

    Google Scholar 

  15. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. In: ICML, pp. 839–846 (2000)

    Google Scholar 

  16. Seo, S., Wallat, M., Graepel, T., Obermayer, K.: Gaussian process regression: Active data selection and test point rejection. In: IJCNN, pp. 241–246 (2010)

    Google Scholar 

  17. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. JMLR 2, 45–66 (2002)

    MATH  Google Scholar 

  18. Vezhnevets, A., Buhmann, J.M., Ferrari, V.: Active learning for semantic segmentation with expected change. In: CVPR, pp. 3162–3169 (2012)

    Google Scholar 

  19. Yeh, T., Darrell, T.: Dynamic visual category learning. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freytag, A., Rodner, E., Bodesheim, P., Denzler, J. (2013). Labeling Examples That Matter: Relevance-Based Active Learning with Gaussian Processes. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics