Skip to main content

Coherent Phonon Dynamics in Carbon Nanotubes

  • Chapter
  • First Online:
Frontiers in Optical Methods

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 180))

  • 1830 Accesses

Abstract

Carbon nanotubes (CNT), under hot attention as new material to achieve new nano-electronics, photonics, and ultrafast devices, have ultrafast responses to photo-induced stimulations. In this chapter we address optical observation of time-resolved reflectivity (or transmittance), capable of measurements of coherent phonons induced in the nanotubes by means of sub-10 fs laser pulses. The isotropic and anisotropic measurements are very sensitive to the polarizations induced by the coherent phonon generation in terms of the amplitudes, particularly in radial breathing modes (RBM), C=C stretching mode (G mode) and defect-induced mode (D mode). Anisotropic characteristics in coherent phonons are remarkable in the self-assembled films of aligned CNT. Metallic CNT, extracted after a purge of semiconducting component, shows spectral feature of Breit-Wigner-Fano (BWF) lineshape. Based on these results, we thus review the electronic transitions, superposition of different symmetry modes and electron dynamics, from the viewpoint of the elucidation of the coherent phonon dynamics in CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941–2944 (2000)

    Article  ADS  Google Scholar 

  2. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  4. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotech. 3, 491–495 (2008)

    Article  ADS  Google Scholar 

  5. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, App. Phys. Lett. 60, 2204–2206 (1992)

    Article  ADS  Google Scholar 

  6. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49–52 (1998)

    Article  ADS  Google Scholar 

  7. T. Hertel, G. Moos, Phys. Rev. Lett. 84, 5002–5005 (2000)

    Article  ADS  Google Scholar 

  8. S. Tatuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsui, Adv. Mater. 15, 534–537 (2003)

    Article  Google Scholar 

  9. N. Kamaraju, S. Kumar, Y.A. Kim, T. Hayashi, H. Muramatsu, M. Endo, A.K. Sood, Appl. Phys. Lett. 95, 081106 (2009)

    Article  ADS  Google Scholar 

  10. F. Wang, A.G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I.H. White, W.I. Milne, A.C. Ferrari, Nat. Nanotech. 3, 738–742 (2008)

    Article  ADS  Google Scholar 

  11. Y.-W. Song, S. Yamashita, S. Maruyama, Appl. Phys. Lett. 92, 021115 (2008)

    Google Scholar 

  12. T.R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara, Opt. Express 13, 8025–8031 (2005)

    Article  ADS  Google Scholar 

  13. T. Dekorsy, G.C. Cho, H. Kurz, Light Scattering in Solids VIII Fullerenes, Semiconductor Surfaces, Coherent Phonons (Springer, Berlin, 2000)

    Google Scholar 

  14. A. Gambetta, C. Manzoni, E. Menna, M. Meneghetti, G. Cerullo, G. Lanzani, S. Tretiak, A. Piryatinski, A. Saxena, R.L. Martin, A.R. Bishop, Nat. Phys. 2, 515–520 (2006)

    Article  Google Scholar 

  15. M. Hase, M. Kitajima, A.M. Constantinescu, H. Petek, Nature 426, 51–54 (2003)

    Article  ADS  Google Scholar 

  16. J.-H. Kim, K.-J. Han, N.-J. Kim, K.-J. Yee, Y.-S. Lim, G.D. Sanders, C.J. Stanton, L.G. Booshehri, E.H. Hároz, J. Kono, Phys. Rev. Lett. 102, 037402 (2009)

    Article  ADS  Google Scholar 

  17. L. Läer, C. Badermaier, J. Crochet, T. Hertel, D. Brida, G. Lanzani, Phys. Rev. Lett. 102, 127401 (2009)

    Article  ADS  Google Scholar 

  18. G.D. Sanders, C.J. Stanton, J.-H. Kim, Y.-S. LimE, H. Hároz, L.G. Booshehri, J. Kono, R. Saito, Phys. Rev. B 79, 205434 (2009)

    Article  ADS  Google Scholar 

  19. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)

    Google Scholar 

  20. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  21. R. Sato, OYO BUTSURI 70, pp. 1196–1199 (2001) [in Japanese]

    Google Scholar 

  22. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555–2558 (1999)

    Article  Google Scholar 

  23. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.E. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187–191 (1997)

    Article  Google Scholar 

  24. Y. Wang, K. Kempa, K. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, Z.F. Ren, Appl. Phys. Lett. 85, 2607–2609 (2004)

    Article  ADS  Google Scholar 

  25. H. Ajiki, T. Ando, Phys. B 201, 349–352 (1994)

    Article  ADS  Google Scholar 

  26. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 57, 4145–4153 (1998)

    Article  ADS  Google Scholar 

  27. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705–814 (2000)

    Article  ADS  Google Scholar 

  28. S.M. Bachilo, M.S. Strano, C. Kitterell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361–2366 (2002)

    Article  ADS  Google Scholar 

  29. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, M. Souza, M.S.S. Dantas, M.A. Pimenta, A.M. Rao, R. Saito, C. Liu, H.M. Chang, Phys. Rev. Lett. 85, 2617–2619 (2000)

    Article  ADS  Google Scholar 

  30. A. Jorio, M.A. Pimenta, A.G.S. Filho, GeG Samsonidze, A.K. Swan, M.S. Ünlü, B.B. Goldbergh, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 90, 107403 (2003)

    Google Scholar 

  31. R. Saito, A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunger, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 64, 085312 (2001)

    Article  ADS  Google Scholar 

  32. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina, Phys. Rev. Lett. 78, 4434–4437 (1997)

    Article  ADS  Google Scholar 

  33. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)

    Article  ADS  Google Scholar 

  34. S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Phys. Rev. B 75, 035427 (2007)

    Article  ADS  Google Scholar 

  35. S.D.M. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Phys. Rev. B 63, 155414 (2001)

    Article  ADS  Google Scholar 

  36. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Nature 388, 257–259 (1997)

    Article  ADS  Google Scholar 

  37. F. Tuinstra, J.L. Koenig, J. Phys. Chem. 53, 1126–1130 (1970)

    Article  Google Scholar 

  38. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  ADS  Google Scholar 

  39. R. Saito, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002)

    Article  ADS  Google Scholar 

  40. R. Saito, TANSO 205, 276–284 (2002)

    Article  Google Scholar 

  41. H.H. Gommans, J.W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A.G. Rinzler, J. Appl. Phys. 88, 2509–2514 (2000)

    Article  ADS  Google Scholar 

  42. K. Ishioka, M. Hase, M. Kitajima, L. Wirtz, A. Rubio, H. Petek, Phys. Rev. B 77, 121402(R) (2008)

    Google Scholar 

  43. K.J. Yee, K.G. Lee, E. Oh, D.S. Kim, Y.S. Lim, Phys. Rev. Lett. 88, 105501 (2002)

    Article  ADS  Google Scholar 

  44. K. Kato, K. Ishioka, M. Kitajima, J. Tang, R. Saito, H. Petek, Nano Lett. 8, 3102–3108 (2008)

    Article  ADS  Google Scholar 

  45. K. Kato, K. Oguri, A. Ishizawa, H. Gotoh, H. Nakano, T. Sogawa, Appl. Phys. Lett. 97, 121910 (2010)

    Article  ADS  Google Scholar 

  46. T. Dekorsy, H. Auer, C. Waschke, H.J. Bakker, H.G. Roskos, H. Kurz, V. Wagner, P. Grosse, Phys. Rev. Lett. 74, 738–741 (1995)

    Article  ADS  Google Scholar 

  47. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, M. Tani, K. Sakai, M. Hangyo, Appl. Phys. Lett. 69, 2474–2476 (1996)

    Article  ADS  Google Scholar 

  48. A.J. Sabbah, D.M. Riffe, Phys. Rev. B 66, 165217 (2002)

    Article  ADS  Google Scholar 

  49. Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Phys. Rev. Lett. 94, 087402 (2005)

    Article  ADS  Google Scholar 

  50. J. Lefebrvre, P. Finnie, Phys. Rev. Lett. 98, 167406 (2007)

    Article  ADS  Google Scholar 

  51. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, Ph Avouris, Nano Lett. 3, 1067–1071 (2003)

    Article  ADS  Google Scholar 

  52. A. Jorio, A. G. S. Filho, V. W. Brar, A. K. SwanM. S. Ünlü, B. B. Goldber, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 65, 121402(R) (2002)

    Google Scholar 

  53. Y. Hashimoto, Y. Murakami, S. Maruyama, J. Kono, Phys. Rev. B 75, 245408 (2007)

    Article  ADS  Google Scholar 

  54. H. Shimoda, S.J. Oh, H.Z. Geng, R.J. Walker, X.B. Zhang, L.E. MeNeil, O. Zhou, Adv. Mater. 14, 899–901 (2002)

    Article  Google Scholar 

  55. J. Hwang, H.H. Gommans, A. Ugawa, A. Tashiro, R. Haggenmueller, K.I. Winey, J.E. Fischer, D.B. Tanner, A.G. Rinzler, Phys. Rev. B 62, R13310–R13313 (2000)

    Article  ADS  Google Scholar 

  56. M.F. Islam, D.E. Milkie, C.L. Kane, A.G. Yodh, J.M. Kikkawa, Phys. Rev. Lett. 93, 037404 (2004)

    Article  ADS  Google Scholar 

  57. A.V. Kuznetsov, C.J. Stanton, Phys. Rev. Lett. 73, 3243–3246 (1994)

    Article  ADS  Google Scholar 

  58. J. Kim, J. Park, B.Y. Lee, D. Lee, K. Yee, Y. Lim, L.G. Booshehri, E.H. Haroz, J. Kono, S. Baik, J. Appl. Phys. 105, 103506 (2009)

    Article  ADS  Google Scholar 

  59. K.J. Yee, Y.S. Lim, T. Dekorsy, D.S. Kim, Phys. Rev. Lett. 86, 1630–1633 (2001)

    Article  ADS  Google Scholar 

  60. R. Loudon, Adv. Phys. 50, 813–864 (2001)

    Article  ADS  Google Scholar 

  61. S. Reich, C. Thomsen, G. S. Duesberg, S. Roth, Phys. Rev. B 63, 041401(R) (2001)

    Google Scholar 

  62. Y.-S. Lim, K.-J. Yee, J.-H. Kim, E.H. Haroz, J. Shaber, J. Kono, S.K. Doorn, R.H. Hauge, R.E. Smalley, Nano Lett. 6, 2696–2700 (2006)

    Article  ADS  Google Scholar 

  63. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, J. Am. Chem. Soc. 2003, 11186–11187 (2003)

    Article  Google Scholar 

  64. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotech. 1, 60–65 (2006)

    Article  ADS  Google Scholar 

  65. K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Exp. 1, 034003 (2008)

    Article  ADS  Google Scholar 

  66. K. Makino, A. Hirano, K. Shiraki, Y. Maeda, M. Hase, Phys. Rev. B 80, 245428 (2009)

    Article  ADS  Google Scholar 

  67. T. Hertel, R. Fasel, G. Moos, Appl. Phys. A 75, 449–465 (2002)

    Article  ADS  Google Scholar 

  68. O.J. Korovyanko, C.-X. Sheng, Z.V. Vardeny, A.B. Dalton, R.H. Baughman, Phys. Rev. Lett. 92, 017403 (2004)

    Article  ADS  Google Scholar 

  69. T. Dumitrică, M.E. Garcia, H.O. Jeschke, B. Yakobson, Phys. Rev. Lett. 92, 117401 (2004)

    Google Scholar 

  70. T. Dumitrică, M.E. Garcia, H.O. Jeschke, B.I. Yakobson, Phys. Rev. B 74, 193406 (2006)

    Article  ADS  Google Scholar 

  71. R.W. Newson, J.-M. Ménard, C. Sames, M. Betz, H.M. van Driel, Nano Lett. 8, 1586–1589 (2008)

    Article  ADS  Google Scholar 

  72. K. Kato, M. Kitajima, J. Vac. Soc. Jpn. 53, 317–326 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kato, K., Oguri, K., Kitajima, M. (2014). Coherent Phonon Dynamics in Carbon Nanotubes. In: Shudo, Ki., Katayama, I., Ohno, SY. (eds) Frontiers in Optical Methods. Springer Series in Optical Sciences, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40594-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40594-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40593-8

  • Online ISBN: 978-3-642-40594-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics