Skip to main content

A Co-occurrence Prior for Continuous Multi-label Optimization

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8081))

Abstract

To obtain high-quality segmentation results the integration of semantic information is indispensable. In contrast to existing segmentation methods which use a spatial regularizer, i.e. a local interaction between image points, the co-occurrence prior [15] imposes penalties on the co-existence of different labels in a segmentation. We propose a continuous domain formulation of this prior, using a convex relaxation multi-labeling approach. While the discrete approach [15] is employs minimization by sequential alpha expansions, our continuous convex formulation is solved by efficient primal-dual algorithms, which are highly parallelizable on the GPU. Also, our framework allows isotropic regularizers which do not exhibit grid bias. Experimental results on the MSRC benchmark confirm that the use of co-occurrence priors leads to drastic improvements in segmentation compared to the classical Potts model formulation when applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 2001 (2001)

    Article  Google Scholar 

  2. Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Tech. rep. TR-2008-05, University of Bonn (2008)

    Google Scholar 

  3. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM Journal on Imaging Sciences 5(4), 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delong, A., Gorelick, L., Veksler, O., Boykov, Y.: Minimizing energies with hierarchical costs. International Journal of Computer Vision 100(1), 38–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: Pascal (VOC2010) Results

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  8. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldluecke, B., Cremers, D.: Convex relaxation for multilabel problems with product label spaces. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 225–238. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-valued labeling. SIAM Journal on Imaging Sciences (2013)

    Google Scholar 

  11. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experimental comparison of discrete and continuous shape optimization methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 332–345. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kohli, P., Ladicky, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision 82(3), 302–324 (2009)

    Article  Google Scholar 

  13. Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposition: Message-passing revisited. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  14. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1436–1453 (2007)

    Article  Google Scholar 

  15. Ladický, L., Russell, C., Kohli, P., Torr, P.: Inference methods for crfs with co-occurrence statistics. International Journal of Computer Vision 103(2), 213–225 (2013)

    Article  Google Scholar 

  16. Leclerc, Y.G.: Region growing using the MDL principle. In: Proc. DARPA Image Underst. Workshop, April 6-8, pp. 720–726 (1990)

    Google Scholar 

  17. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vision 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  19. Nieuwenhuis, C., Toeppe, E., Cremers, D.: A survey and comparison of discrete and continuous multilabel segmentation approaches. International Journal of Computer Vision (2013)

    Google Scholar 

  20. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: ICCV (2011)

    Google Scholar 

  21. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  22. Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1605–1614. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  23. Strekalovskiy, E., Goldluecke, B., Cremers, D.: Tight convex relaxations for vector-valued labeling problems. In: ICCV (2011)

    Google Scholar 

  24. Werlberger, M., Unger, M., Pock, T., Bischof, H.: Efficient Minimization of the Non-Local Potts Model. In: ICSSVMCV (2011)

    Google Scholar 

  25. Yuan, J., Boykov, Y.: Tv-based multi-label image segmentation with label cost prior. In: BMVC, pp. 1–12 (2010)

    Google Scholar 

  26. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization (October 2008)

    Google Scholar 

  27. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multi-band image segmentation. PAMI 18, 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Souiai, M., Strekalovskiy, E., Nieuwenhuis, C., Cremers, D. (2013). A Co-occurrence Prior for Continuous Multi-label Optimization. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics