Skip to main content

T-Type Calcium Channels in Pain Neuronal Circuits

  • Chapter
  • First Online:
Pathologies of Calcium Channels
  • 1464 Accesses

Abstract

Pain is a quite frequent complaint accompanying numerous pathologies. Among these pathological cases numerous neuropathies are retrieved with identified etiologies (chemotherapy induced peripheral neuropathies (CIPN), diabetes, surgeries) and also more diffuse syndromes such as fibromyalgia, migraine. More broadly, pain is one of the first and dramatic consequences of the majority of inherited diseases. Despite their importance for the quality of life, current therapies in symptomatic pain management are limited to drugs that are either old, or with a limited efficacy or that possess a bad benefit/risk ratio. Morphine and opioids for example have severe side effects. As no new pharmacological concept has led to new analgesics in the Past, the discovery of new medications is needed. It is necessary to identify new targets (such as ionic channels, the primary molecules of cellular excitability) in pain transmission before hoping to find specific molecules to treat different kinds of pain. Therefore studies of ion channels in pain pathways are extremely active. This is particularly true with ion channels in peripheral sensory neurons in dorsal root ganglia known now to express unique sets of these channels. Moreover, both spinal and supra spinal levels are clearly important in pain modulation with a key role of limbic areas such as thalamus filtering upcoming noxious information in their way to the cortex in the so called pain matrix representing a network of cerebral regions involved in the building of pain sensation, which comprises cortical somatic areas, insula, cingulate cortex, and associated with multiple other regions. Among these ion channels, we and others revealed the important role of low voltage-gated calcium channels (T-type channels) in cellular excitability in different steps of the pain pathways. These channels, by being activated nearby resting membrane potential have biophysical characteristic suited to facilitate action potential generation and rhythmicity. In this chapter we will review the current knowledge on the role of these channels in the perception and modulation of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SE, Darnell RB, Lipscombe D (2010) The neuronal splicing factor Nova controls alternative splicing in N-type and P-type Cav2 calcium channels. Channels (Austin) 4(6):483–489

    CAS  Google Scholar 

  • Bachy I, Franck MC, Li L, Abdo H, Pattyn A, Ernfors P (2011) The transcription factor Cux2 marks development of an A-delta sublineage of TrkA sensory neurons. Dev Biol 360(1):77–86

    PubMed  CAS  Google Scholar 

  • Bao J, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 18(21):8740–8750

    PubMed  CAS  Google Scholar 

  • Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E, Chemin J (2009) T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci 29(42):13106–13114

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Braz JM (2010) Transgenic mouse models for the tracing of “pain” pathways. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. Frontiers in neuroscience. CRC Press, Boca Raton

    Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    PubMed  CAS  Google Scholar 

  • Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61(2):259–271

    PubMed  CAS  Google Scholar 

  • Bender KJ, Ford CP, Trussell LO (2010) Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron 68(3):500–511

    PubMed  CAS  Google Scholar 

  • Bergquist F, Nissbrandt H (2003) Influence of R-type (Cav2.3) and t-type (Cav3.1-3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience 120(3):757–764

    PubMed  CAS  Google Scholar 

  • Bladen C, Zamponi GW (2012) Common mechanisms of drug interactions with sodium and T-type calcium channels. Mol Pharmacol 82(3):481–487

    PubMed  CAS  Google Scholar 

  • Blasius AL, Dubin AE, Petrus MJ, Lim BK, Narezkina A, Criado JR, Wills DN, Xia Y, Moresco EM, Ehlers C, Knowlton KU, Patapoutian A, Beutler B (2011) Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc Natl Acad Sci USA 108(48):19413–19418

    PubMed  CAS  Google Scholar 

  • Bossu JL, Feltz A, Thomann JM (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch 403(4):360–368

    PubMed  CAS  Google Scholar 

  • Bourdu S, Dapoigny M, Chapuy E, Artigue F, Vasson MP, Dechelotte P, Bommelaer G, Eschalier A, Ardid D (2005) Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 128(7):1996–2008

    PubMed  CAS  Google Scholar 

  • Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP (1999) Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2(5):407–415

    PubMed  CAS  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24(2):315–324

    PubMed  CAS  Google Scholar 

  • Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47(6):787–793

    PubMed  CAS  Google Scholar 

  • Cao XH, Byun HS, Chen SR, Pan HL (2011) Diabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons. J Neurochem 119(3):594–603

    PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310(5977):501–502

    PubMed  CAS  Google Scholar 

  • Casey KL (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci USA 96(14):7668–7674

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harbor Perspect Biol 3(8):a003947

    Google Scholar 

  • Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001a) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80(3):1238–1250

    PubMed  CAS  Google Scholar 

  • Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001b) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20(24):7033–7040

    PubMed  CAS  Google Scholar 

  • Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302(5649):1416–1418

    PubMed  CAS  Google Scholar 

  • Chen WK, Liu IY, Chang YT, Chen YC, Chen CC, Yen CT, Shin HS (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30(31):10360–10368

    PubMed  CAS  Google Scholar 

  • Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM (2011) TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 80(5):900–910

    PubMed  CAS  Google Scholar 

  • Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6(5):425–431

    PubMed  CAS  Google Scholar 

  • Coste B, Crest M, Delmas P (2007) Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129(1):57–77

    PubMed  CAS  Google Scholar 

  • Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83(1):103–109

    PubMed  CAS  Google Scholar 

  • David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP (2010) Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 4(5):375–389

    Google Scholar 

  • Devor M (1999) Unexplained peculiarities of the dorsal root ganglion. Pain Suppl 6:S27–S35

    Google Scholar 

  • Djouhri L, Lawson SN (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 46(2):131–145

    PubMed  Google Scholar 

  • Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F (2003) Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105(1–2):159–168

    PubMed  CAS  Google Scholar 

  • Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2009) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30(1):99–109

    Google Scholar 

  • Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel {alpha}1 subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279(28):29263–29269

    PubMed  CAS  Google Scholar 

  • Dubreuil AS, Boukhaddaoui H, Desmadryl G, Martinez-Salgado C, Moshourab R, Lewin GR, Carroll P, Valmier J, Scamps F (2004) Role of T-type calcium current in identified D-hair mechanoreceptor neurons studied in vitro. J Neurosci 24(39):8480–8484

    PubMed  CAS  Google Scholar 

  • Erlanger J (1927) The interpretation of the action potential in cutuaneous and muscle nerves. Am J Physiol 1(82):11

    Google Scholar 

  • Erlanger J, Gasser HS (1930) The action potential in fibers of slow conduction in spinal roots and somatic nerves. Am J Physiol 92(1):39

    Google Scholar 

  • Fang X, McMullan S, Lawson SN, Djouhri L (2005) Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J Physiol 565(Pt 3):927–943

    PubMed  CAS  Google Scholar 

  • Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol 359:431–446

    PubMed  CAS  Google Scholar 

  • Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109(1–2):150–161

    PubMed  CAS  Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol 394:173–200

    PubMed  CAS  Google Scholar 

  • Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, Uebele VN, Renger JJ, Eschalier A, Ardid D, Bourinet E (2013) State dependent properties of a new T-type calcium channel blocker enhance Cav3.2 selectivity and support analgesic effects. Pain 154:283–293

    PubMed  CAS  Google Scholar 

  • Gackiere F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoi-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) Cav3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283(15):10162–10173

    PubMed  CAS  Google Scholar 

  • Gadotti VM, You H, Petrov RR, Berger ND, Diaz P, Zamponi GW (2013) Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist. Mol Pain 9(1):32

    PubMed  CAS  Google Scholar 

  • Gerke MB, Duggan AW, Xu L, Siddall PJ (2003) Thalamic neuronal activity in rats with mechanical allodynia following contusive spinal cord injury. Neuroscience 117(3):715–722

    PubMed  CAS  Google Scholar 

  • Graham BA, Brichta AM, Callister RJ (2007) Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 98(3):1057–1063

    PubMed  CAS  Google Scholar 

  • Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465(7301):1070–1074

    PubMed  CAS  Google Scholar 

  • Hildebrand ME, Smith PL, Bladen C, Eduljee C, Xie JY, Chen L, Fee-Maki M, Doering CJ, Mezeyova J, Zhu Y, Belardetti F, Pajouhesh H, Parker D, Arneric SP, Parmar M, Porreca F, Tringham E, Zamponi GW, Snutch TP (2011) A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain. Pain 152(4):833–843

    PubMed  CAS  Google Scholar 

  • Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, Shah MM (2011) Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 14(4):478–486

    PubMed  CAS  Google Scholar 

  • Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P (2009) Regulation of T-type calcium channels: signalling pathways and functional implications. Biochim Biophys Acta 1793(6):947–952

    PubMed  CAS  Google Scholar 

  • Iftinca MC, Zamponi GW (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci 30(1):32–40

    PubMed  CAS  Google Scholar 

  • Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299(5610):1237–1240

    Google Scholar 

  • Iwata M, LeBlanc BW, Kadasi LM, Zerah ML, Cosgrove RG, Saab CY (2011) High-frequency stimulation in the ventral posterolateral thalamus reverses electrophysiologic changes and hyperalgesia in a rat model of peripheral neuropathic pain. Pain 152(11):2505–2513

    PubMed  Google Scholar 

  • Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32(27):9374–9382

    PubMed  CAS  Google Scholar 

  • Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27(12):3305–3316

    PubMed  CAS  Google Scholar 

  • Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99(6):3151–3156

    PubMed  CAS  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A (1996) Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119(Pt 2):363–375

    Google Scholar 

  • Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85(2):331–345

    PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    PubMed  CAS  Google Scholar 

  • Kawabata A (2013) Targeting Ca(v)3.2 T-type calcium channels as a therapeutic strategy for chemotherapy-induced neuropathic pain. Nihon yakurigaku zasshi Folia pharmacologica Japonica 141(2):81–84

    PubMed  CAS  Google Scholar 

  • Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86(3):941–966

    PubMed  CAS  Google Scholar 

  • Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279(11):9681–9684

    PubMed  CAS  Google Scholar 

  • Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31(1):35–45

    PubMed  CAS  Google Scholar 

  • Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302(5642):117–119

    PubMed  CAS  Google Scholar 

  • Ku WH, Schneider SP (2011) Multiple T-type Ca2+ current subtypes in electrophysiologically characterized hamster dorsal horn neurons: possible role in spinal sensory integration. J Neurophysiol 106(5):2486–2498

    PubMed  CAS  Google Scholar 

  • Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35(6):373–381

    PubMed  CAS  Google Scholar 

  • Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 58(11):2656–2665

    PubMed  CAS  Google Scholar 

  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19(6):1912–1921

    PubMed  CAS  Google Scholar 

  • Lee WY, Orestes P, Latham J, Naik AK, Nelson MT, Vitko I, Perez-Reyes E, Jevtovic-Todorovic V, Todorovic SM (2009) Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway. J Neurosci 29(30):9500–9509

    PubMed  CAS  Google Scholar 

  • Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR (1989) Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 496(1–2):357–360

    PubMed  CAS  Google Scholar 

  • Lenz FA, Gracely RH, Rowland LH, Dougherty PM (1994) A population of cells in the human thalamic principal sensory nucleus respond to painful mechanical stimuli. Neurosci Lett 180(1):46–50

    PubMed  CAS  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627

    PubMed  CAS  Google Scholar 

  • Lipscombe D, Andrade A, Allen SE (2013) Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences. Biochim Biophys Acta 1828(7): 1522–1529

    Google Scholar 

  • Liu Y, Yang FC, Okuda T, Dong X, Zylka MJ, Chen CL, Anderson DJ, Kuner R, Ma Q (2008) Mechanisms of compartmentalized expression of Mrg class G-protein-coupled sensory receptors. J Neurosci 28(1):125–132

    PubMed  CAS  Google Scholar 

  • Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96(26):15222–15227

    PubMed  CAS  Google Scholar 

  • Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54(5):739–754

    PubMed  CAS  Google Scholar 

  • Maeda Y, Aoki Y, Sekiguchi F, Matsunami M, Takahashi T, Nishikawa H, Kawabata A (2009) Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142(1–2):127–132

    PubMed  CAS  Google Scholar 

  • Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrere C, Pizzoccaro A, Muller E, Nargeot J, Snutch TP, Eschalier A, Bourinet E, Ardid D (2011) T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA 108(27):11268–11273

    PubMed  CAS  Google Scholar 

  • Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8(2):114–127

    PubMed  CAS  Google Scholar 

  • Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264

    PubMed  CAS  Google Scholar 

  • McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24(9):2581–2594

    PubMed  Google Scholar 

  • Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145(1–2):184–195

    PubMed  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    PubMed  CAS  Google Scholar 

  • Modesti LM, Waszak M (1975) Firing pattern of cells in human thalamus during dorsal column stimulation. Appl Neurophysiol 38(4):251–258

    PubMed  CAS  Google Scholar 

  • Molliver DC, Radeke MJ, Feinstein SC, Snider WD (1995) Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J Comp Neurol 361(3):404–416

    PubMed  CAS  Google Scholar 

  • Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19(4):849–861

    PubMed  CAS  Google Scholar 

  • Nelson MT, Joksovic PM, Su P, Kang HW, Van Deusen A, Baumgart JP, David LS, Snutch TP, Barrett PQ, Lee JH, Zorumski CF, Perez-Reyes E, Todorovic SM (2007a) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27(46):12577–12583

    PubMed  CAS  Google Scholar 

  • Nelson MT, Woo J, Kang HW, Vitko I, Barrett PQ, Perez-Reyes E, Lee JH, Shin HS, Todorovic SM (2007b) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27(31):8250–8260

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316(6027):440–443

    PubMed  CAS  Google Scholar 

  • Okayama S, Imagawa K, Naya N, Iwama H, Somekawa S, Kawata H, Horii M, Nakajima T, Uemura S, Saito Y (2006) Blocking T-type Ca2 + channels with efonidipine decreased plasma aldosterone concentration in healthy volunteers. Hypertension Res Off J Jpn Soc Hypertension 29(7):493–497

    CAS  Google Scholar 

  • Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156

    PubMed  CAS  Google Scholar 

  • Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, Poiro N, Digruccio MR, Krishnan K, Covey DF, Lee JH, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM (2013) Reversal of neuropathic pain in diabetes by targeting glycosylation of Cav3.2 T-type calcium channels. Diabetes (in press)

    Google Scholar 

  • Park C, Kim JH, Yoon BE, Choi EJ, Lee CJ, Shin HS (2010) T-type channels control the opioidergic descending analgesia at the low threshold-spiking GABAergic neurons in the periaqueductal gray. Proc Natl Acad Sci USA 107(33):14857–14862

    PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358

    PubMed  CAS  Google Scholar 

  • Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486(7401):135–139

    PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391(6670):896–900

    PubMed  CAS  Google Scholar 

  • Perl ER (2007) Ideas about pain, a historical view. Nat Rev Neurosci 8(1):71–80

    PubMed  CAS  Google Scholar 

  • Pinchenko VO, Kostyuk PG, Kostyuk EP (2005) Influence of external pH on two types of low-voltage-activated calcium currents in primary sensory neurons of rats. Biochim Biophys Acta 1724(1–2):1–7

    PubMed  CAS  Google Scholar 

  • Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O’Brien TJ (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29(2):371–380

    PubMed  CAS  Google Scholar 

  • Reed-Geaghan EG, Maricich SM (2011) Peripheral somatosensation: a touch of genetics. Curr Opin Genet Dev 21(3):240–248

    PubMed  CAS  Google Scholar 

  • Reeh PW (1986) Sensory receptors in mammalian skin in an in vitro preparation. Neurosci Lett 66(2):141–146

    PubMed  CAS  Google Scholar 

  • Rinaldi PC, Young RF, Albe-Fessard D, Chodakiewitz J (1991) Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J Neurosurg 74(3):415–421

    PubMed  CAS  Google Scholar 

  • Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129(Pt 1):55–64

    PubMed  Google Scholar 

  • Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 445:639–658

    PubMed  CAS  Google Scholar 

  • Senatore A, Spafford JD (2012) Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating. PLoS ONE 7(6):e37409

    PubMed  CAS  Google Scholar 

  • Serra J (2010) Microneurography: an opportunity for translational drug development in neuropathic pain. Neurosci Lett 470(3):155–157

    PubMed  CAS  Google Scholar 

  • Shelton L, Becerra L, Borsook D (2012) Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 96(2):208–219

    PubMed  CAS  Google Scholar 

  • Shen Y, Yu D, Hiel H, Liao P, Yue DT, Fuchs PA, Soong TW (2006) Alternative splicing of the Ca(v)1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells. J Neurosci 26(42):10690–10699

    PubMed  CAS  Google Scholar 

  • Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR (2003) A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 6(7):724–730

    PubMed  CAS  Google Scholar 

  • Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281(31):22085–22091

    PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685

    PubMed  CAS  Google Scholar 

  • Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K, Nishikawa H, Kawabata A (2010) Upregulation of Ca(v)3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain 150(1):183–191

    PubMed  CAS  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19(6):1895–1911

    PubMed  CAS  Google Scholar 

  • Tan GM, Yu D, Wang J, Soong TW (2012) Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. J Biol Chem 287(2):832–847

    PubMed  CAS  Google Scholar 

  • Tandrup T (1995) Are the neurons in the dorsal root ganglion pseudounipolar? A comparison of the number of neurons and number of myelinated and unmyelinated fibres in the dorsal root. J Comp Neurol 357(3):341–347

    PubMed  CAS  Google Scholar 

  • Tang ZZ, Liang MC, Lu S, Yu D, Yu CY, Yue DT, Soong TW (2004) Transcript scanning reveals novel and extensive splice variations in human l-type voltage-gated calcium channel, Cav1.2 alpha1 subunit. J Biol Chem 279(43):44335–44343

    PubMed  CAS  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V (2006) The role of T-type calcium channels in peripheral and central pain processing. CNS Neurol Disord: Drug Targets 5(6):639–653

    CAS  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V (2013) Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling. Pflugers Arch 465(7):921–927

    PubMed  CAS  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, Olney JW, Zorumski CF (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31(1):75–85

    PubMed  CAS  Google Scholar 

  • Tscherter A, David F, Ivanova T, Deleuze C, Renger JJ, Uebele VN, Shin HS, Bal T, Leresche N, Lambert RC (2011) Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. J Physiol 589(Pt 7):1707–1724

    PubMed  CAS  Google Scholar 

  • Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81(6):2753–2763

    PubMed  CAS  Google Scholar 

  • Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27(2):322–330

    PubMed  CAS  Google Scholar 

  • Walsh MA, Graham BA, Brichta AM, Callister RJ (2009) Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. J Neurophysiol 101(4):1800–1812

    PubMed  CAS  Google Scholar 

  • Walton KD, Llinas RR (2010) Central pain as a thalamocortical dysrhythmia: a thalamic efference disconnection? In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. Frontiers in neuroscience. CRC Press, Boca Raton

    Google Scholar 

  • Wang R, Lewin GR (2011) The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J Physiol 589(Pt 9):2229–2243

    Google Scholar 

  • Weiss N, Zamponi GW (2012) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828 (7):1579–1586

    Google Scholar 

  • Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287(4):2810–2818

    PubMed  CAS  Google Scholar 

  • Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Ca3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch. Epub 2013/03/19

    Google Scholar 

  • Wen XJ, Xu SY, Chen ZX, Yang CX, Liang H, Li H (2010) The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology 85(5):295–300

    PubMed  CAS  Google Scholar 

  • Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW (2012) Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 149(5):1112–1124

    PubMed  CAS  Google Scholar 

  • Wu H, Williams J, Nathans J (2012) Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling. eLife 1:e00181

    Google Scholar 

  • You H, Altier C, Zamponi GW (2010) CCR2 receptor ligands inhibit Cav3.2 T-type calcium channels. Mol Pharmacol 77(2):211–217

    PubMed  CAS  Google Scholar 

  • You H, Gadotti VM, Petrov RR, Zamponi GW, Diaz P (2011) Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands. Mol Pain 7:89

    PubMed  CAS  Google Scholar 

  • Yue J, Liu L, Liu Z, Shu B, Zhang Y (2013) Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine 38(6):463–470

    PubMed  Google Scholar 

  • Zamponi GW, Lory P, Perez-Reyes E (2010) Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 460 (2):395–403

    Google Scholar 

  • Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, Reeh PW (2009) Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 4(2):174–196

    PubMed  CAS  Google Scholar 

  • Zotterman Y (1939) Touch, pain and tickling: an electro-physiological investigation on cutaneous sensory nerves. J Physiol 95(1):1–28

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Pain related work conducted in the authors’ laboratory is supported by the Agence Nationale pour la Recherche, Association Française pour le Myopathies, Institut UPSA de la Douleur, and the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Bourinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francois, A., Pizzoccaro, A., Laffray, S., Bourinet, E. (2014). T-Type Calcium Channels in Pain Neuronal Circuits. In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_6

Download citation

Publish with us

Policies and ethics