Skip to main content

Role of TRPC and Orai Channels in Vascular Remodeling

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

Calcium permeable channels that are barely sensitive to membrane voltage but controlled by a complex array of external stimuli to generate coordinated cellular Ca2+ signals have been identified and extensively characterized in the past decades. Vascular cells express Ca2+ conductances, which lack primary voltage sensitivity and are formed by proteins of the TRP (transient receptor potential) and Orai families. Channel complexes composed of TRPC (canonical TRP) or Orai proteins operate in concert with other Ca2+ transporters to govern both acute functions, such as contraction and migration and long-term fate of vascular cells due to a pivotal role in Ca2+ transcription coupling. Both TRPC and Orai channels have been recently suggested to control phenotype of vascular cells and therefore to represent attractive novel targets for pharmacological prevention of vascular remodeling and aging. With this chapter, we aim to provide an overview on current knowledge regarding the role of TRPC and Orai channels in vascular endothelium and smooth muscle. The significance of these channels for maladaptive remodeling processes in the vascular system and potential therapeutic strategies based on modulation or block of these Ca2+ channels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299

    PubMed  CAS  Google Scholar 

  • AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104(7):860–869

    PubMed  CAS  Google Scholar 

  • Ailawadi G, Moehle CW, Pei H, Walton SP, Yang Z, Kron IL, Lau CL, Owens GK (2009) Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J Thorac Cardiovasc Surg 138(6):1392–1399

    PubMed  Google Scholar 

  • Alvaro-Gonzalez LC, Freijo-Guerrero MM, Sadaba-Garay F (2002) Inflammatory mechanisms, arteriosclerosis and ischemic stroke: clinical data and perspectives. Revista de neurologia 35(5):452–462

    PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223

    PubMed  CAS  Google Scholar 

  • Antigny F, Girardin N, Frieden M (2012) Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem 287(8):5917–5927

    PubMed  CAS  Google Scholar 

  • Antoniotti S, Fiorio Pla A, Barral S, Scalabrino O, Munaron L, Lovisolo D (2006) Interaction between TRPC channel subunits in endothelial cells. J Recept Signal Transduct Res 26(4):225–240

    PubMed  CAS  Google Scholar 

  • Antoniotti S, Lovisolo D, Fiorio Pla A, Munaron L (2002) Expression and functional role of bTRPC1 channels in native endothelial cells. FEBS Lett 510(3):189–195

    PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    PubMed  CAS  Google Scholar 

  • Aubart FC, Sassi Y, Coulombe A, Mougenot N, Vrignaud C, Leprince P, Lechat P, Lompre AM, Hulot JS (2009) RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Mol Ther 17(3):455–462

    PubMed  CAS  Google Scholar 

  • Awazu Y, Nakamura K, Mizutani A, Kakoi Y, Iwata H, Yamasaki S, Miyamoto N, Imamura S, Miki H, Hori A (2013) A Novel Inhibitor of c-Met and VEGF Receptor Tyrosine Kinases with a Broad Spectrum of In Vivo Antitumor Activities. Mol Cancer Ther 12(6):913–924

    PubMed  CAS  Google Scholar 

  • Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549

    PubMed  CAS  Google Scholar 

  • Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 297(5):C1103–C1112

    PubMed  CAS  Google Scholar 

  • Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451(1):53–60

    PubMed  CAS  Google Scholar 

  • Beech DJ (2007) Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem Soc Trans 35(Pt 5):890–894

    PubMed  CAS  Google Scholar 

  • Beech DJ (2012) Orai1 calcium channels in the vasculature. Pflugers Arch 463(5):635–647

    PubMed  CAS  Google Scholar 

  • Beech DJ (2013) Characteristics of transient receptor potential canonical calcium-permeable channels and their relevance to vascular physiology and disease. Circulation journal : official journal of the Japanese Circulation Society 77(3):570–579

    CAS  Google Scholar 

  • Beech DJ, Xu SZ, McHugh D, Flemming R (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium 33(5–6):433–440

    PubMed  CAS  Google Scholar 

  • Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A, Xu SZ, Beech DJ, Dreja K, Hellstrand P (2005) Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol 288(4):C872–C880

    PubMed  CAS  Google Scholar 

  • Bernatchez PN, Rollin S, Soker S, Sirois MG (2002) Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration and PAF synthesis: Role of neuropilin-1. J Cell Biochem 85(3):629–639

    PubMed  CAS  Google Scholar 

  • Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295(3):C779–C790

    PubMed  CAS  Google Scholar 

  • Berrout J, Jin M, O’Neil RG (2012) Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 1436:1–12

    PubMed  CAS  Google Scholar 

  • Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd’heuil D, Trebak M (2010) Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol Cell Physiol 298(5):C993–C1005

    PubMed  CAS  Google Scholar 

  • Burnstock G (2008) Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol Rep 60(1):12–20

    PubMed  CAS  Google Scholar 

  • Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42(2):133–144

    PubMed  CAS  Google Scholar 

  • Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190(3):255–266

    PubMed  CAS  Google Scholar 

  • Cheng HW, James AF, Foster RR, Hancox JC, Bates DO (2006) VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 26(8):1768–1776

    PubMed  CAS  Google Scholar 

  • Cioffi DL (2011) Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal 15(6):1567–1582

    PubMed  CAS  Google Scholar 

  • Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T (2012) Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res 110(11):1435–1444

    PubMed  CAS  Google Scholar 

  • Courjaret R, Machaca K (2012) STIM and Orai in cellular proliferation and division. Frontiers in bioscience 4:331–341

    Google Scholar 

  • Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM (2013) Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling. J Biol Chem 288(1):561–569

    PubMed  CAS  Google Scholar 

  • Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe RM (2007) Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13(3):171–179

    PubMed  CAS  Google Scholar 

  • Damon DH (2000) Adrenoceptor-mediated modulation of endothelial-dependent vascular smooth muscle growth. J Auton Pharmacol 20(1):47–54

    PubMed  CAS  Google Scholar 

  • de Frutos S, Caldwell E, Nitta CH, Kanagy NL, Wang J, Wang W, Walker MK, Gonzalez Bosc LV (2010) NFATc3 contributes to intermittent hypoxia-induced arterial remodeling in mice. Am J Physiol Heart Circ Physiol 299(2):H356–H363

    PubMed  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298

    PubMed  CAS  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112(3):744–760

    PubMed  CAS  Google Scholar 

  • Dietrich A, Gudermann T (2008) Another TRP to endothelial dysfunction: TRPM2 and endothelial permeability. Circ Res 102(3):275–277

    PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103(2):262–270

    PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Rost BR, Gudermann T (2005) The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 451(1):72–80

    PubMed  CAS  Google Scholar 

  • Dong YY, Wu M, Yim AP, He GW (2005) Hypoxia-reoxygenation, St. Thomas cardioplegic solution, and nicorandil on endothelium-derived hyperpolarizing factor in coronary microarteries. The Annals of thoracic surgery 80(5):1803–1811

    PubMed  Google Scholar 

  • Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN, Peller CR, Byrd JP, Kumar S, Obukhov AG, Sturek M (2010) Exercise training decreases store-operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc Res 85(3):631–640

    PubMed  CAS  Google Scholar 

  • Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281(8):4977–4982

    PubMed  CAS  Google Scholar 

  • Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3(2):121–127

    PubMed  CAS  Google Scholar 

  • Frischauf I, Schindl R, Derler I, Bergsmann J, Fahrner M, Romanin C (2008) The STIM/Orai coupling machinery. Channels (Austin) 2(4):261–268

    Google Scholar 

  • Fukuyama K, Ichiki T, Imayama I, Ohtsubo H, Ono H, Hashiguchi Y, Takeshita A, Sunagawa K (2006) Thyroid hormone inhibits vascular remodeling through suppression of cAMP response element binding protein activity. Arterioscler Thromb Vasc Biol 26(9):2049–2055

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    PubMed  CAS  Google Scholar 

  • Garcia RL, Schilling WP (1997) Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem Biophys Res Commun 239(1):279–283

    PubMed  CAS  Google Scholar 

  • Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, Zou Q, Shen F, Wang Y (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283(1):43–51

    PubMed  CAS  Google Scholar 

  • Geeraerts MD, Ronveaux-Dupal MF, Lemasters JJ, Herman B (1991) Cytosolic free Ca2+ and proteolysis in lethal oxidative injury in endothelial cells. Am J Physiol 261(5 Pt 1):C889–C896

    PubMed  CAS  Google Scholar 

  • Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34(3):185–194

    PubMed  CAS  Google Scholar 

  • Glasnov TN, Groschner K, Kappe CO (2009) High-speed microwave-assisted synthesis of the trifluoromethylpyrazol-derived canonical transient receptor potential (TRPC) channel inhibitor Pyr3. ChemMedChem 4(11):1816–1818

    PubMed  CAS  Google Scholar 

  • Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2 +) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280(2):H746–H755

    PubMed  CAS  Google Scholar 

  • Gonzalez-Cobos JC, Trebak M (2010) TRPC channels in smooth muscle cells. Front Biosci j Virtual Libr 15:1023–1039

    CAS  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455(6):1097–1103

    PubMed  CAS  Google Scholar 

  • Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, Gryczynski Z, Yorio T, Ma H, Ma R (2010) Canonical transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J Biol Chem 285(30):23466–23476

    PubMed  CAS  Google Scholar 

  • Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2013) Nox1 Plays a Key Role in Diabetes Accelerated Atherosclerosis. Circulation 127:1888–1902

    PubMed  CAS  Google Scholar 

  • Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437(1–2):101–106

    PubMed  CAS  Google Scholar 

  • Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118; discussion 118–122, 155–109, 263–106

    Google Scholar 

  • Guibert C, Ducret T, Savineau JP (2011) Expression and physiological roles of TRP channels in smooth muscle cells. Adv Exp Med Biol 704:687–706

    PubMed  CAS  Google Scholar 

  • Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243

    PubMed  CAS  Google Scholar 

  • Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15(7):605–614

    PubMed  CAS  Google Scholar 

  • Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23(9):1510–1520

    PubMed  CAS  Google Scholar 

  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398

    PubMed  CAS  Google Scholar 

  • He B, Liu F, Ruan J, Li A, Chen J, Li R, Shen J, Zheng D, Luo R (2012) Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep 27(5):1548–1554

    PubMed  CAS  Google Scholar 

  • Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102(3):347–355

    PubMed  CAS  Google Scholar 

  • Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    PubMed  CAS  Google Scholar 

  • Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279(18):18887–18894

    PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    PubMed  CAS  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    PubMed  CAS  Google Scholar 

  • House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456(5):769–785

    PubMed  CAS  Google Scholar 

  • Huang JH, He GW, Xue HM, Yao XQ, Liu XC, Underwood MJ, Yang Q (2011) TRPC3 channel contributes to nitric oxide release: significance during normoxia and hypoxia-reoxygenation. Cardiovasc Res 91(3):472–482

    PubMed  CAS  Google Scholar 

  • Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. Faseb J 24(4):1023–1034

    PubMed  CAS  Google Scholar 

  • Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX (2012) A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P(2)-diacylglycerol signalling. J Physiol 590(Pt 5):1101–1119

    PubMed  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99(2):119–131

    PubMed  CAS  Google Scholar 

  • Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2 +)-permeable cation channel. Circ Res 88(3):325–332

    PubMed  CAS  Google Scholar 

  • Irie S, Tavassoli M (1991) Transendothelial transport of macromolecules: the concept of tissue-blood barriers. Cell Biol Rev 25 (4):317–333, 340–311

    Google Scholar 

  • Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 96(12):1282–1290

    PubMed  CAS  Google Scholar 

  • Jones BF, Boyles RR, Hwang SY, Bird GS, Putney JW (2008) Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 48(4):1273–1281

    PubMed  CAS  Google Scholar 

  • Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588(Pt 9):1419–1433

    PubMed  CAS  Google Scholar 

  • Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65

    PubMed  CAS  Google Scholar 

  • Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518(Pt 2):345–358

    PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292(1):C59–C69

    PubMed  CAS  Google Scholar 

  • Kernochan LE, Tran BN, Tangkijvanich P, Melton AC, Tam SP, Yee HF Jr (2002) Endothelin-1 stimulates human colonic myofibroblast contraction and migration. Gut 50(1):65–70

    PubMed  CAS  Google Scholar 

  • Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA (2000) Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci U S A 97(4):1731–1736

    PubMed  CAS  Google Scholar 

  • Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405

    PubMed  CAS  Google Scholar 

  • Koenig S, Schernthaner M, Maechler H, Kappe CO, Glasnov TN, Hoefler G, Braune M, Wittchow E, Groschner K (2013) A TRPC3 Blocker, Ethyl-1-(4-(2,3,3-Trichloroacrylamide)Phenyl)-5-(Trifluoromethyl)-1H-Pyrazole-4-C arboxylate (Pyr3), Prevents Stent-Induced Arterial Remodeling. J Pharmacol Exp Ther 344(1):33–40

    PubMed  CAS  Google Scholar 

  • Kuang CY, Yu Y, Guo RW, Qian DH, Wang K, Den MY, Shi YK, Huang L (2010) Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun 398(2):315–320

    PubMed  CAS  Google Scholar 

  • Kuang CY, Yu Y, Wang K, Qian DH, Den MY, Huang L (2012) Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Devel 21(3):487–496

    CAS  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98(4):557–563

    PubMed  CAS  Google Scholar 

  • Kusaba T, Okigaki M, Matui A, Murakami M, Ishikawa K, Kimura T, Sonomura K, Adachi Y, Shibuya M, Shirayama T, Tanda S, Hatta T, Sasaki S, Mori Y, Matsubara H (2010) Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci U S A 107(45):19308–19313

    PubMed  CAS  Google Scholar 

  • Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205(3):147–157

    PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2010a) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584(10):2022–2027

    PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010b) STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J Biol Chem 285(49):38666–38673

    PubMed  CAS  Google Scholar 

  • Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A (1993) Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 88(1):43–54

    PubMed  CAS  Google Scholar 

  • Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352(1):130–134

    PubMed  CAS  Google Scholar 

  • Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, Majeed Y, Tumova S, Seymour VA, Taylor H, Stacey M, O’Regan D, Foster R, Porter KE, Kearney MT, Beech DJ (2011a) Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res 108(10):1190–1198

    PubMed  CAS  Google Scholar 

  • Li J, McKeown L, Ojelabi O, Stacey M, Foster R, O’Regan D, Porter KE, Beech DJ (2011b) Nanomolar potency and selectivity of a Ca(2)(+) release-activated Ca(2)(+) channel inhibitor against store-operated Ca(2)(+) entry and migration of vascular smooth muscle cells. Br J Pharmacol 164(2):382–393

    PubMed  CAS  Google Scholar 

  • Li S, Westwick J, Cox B, Poll CT (2004) TRP channels as drug targets. Novartis Found Symp 258:204–213; discussion 213–221, 263–206

    Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105(8):2895–2900

    PubMed  CAS  Google Scholar 

  • Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206

    PubMed  CAS  Google Scholar 

  • Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280(22):21600–21606

    PubMed  CAS  Google Scholar 

  • Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J Roy Soc Interface/Roy Soc 8(63):1379–1385

    CAS  Google Scholar 

  • Lyfenko AD, Dirksen RT (2008) Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J Physiol 586(Pt 20):4815–4824

    PubMed  CAS  Google Scholar 

  • Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2 +) entry in vascular endothelial cells. Cell Calcium 50(6):502–509

    PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ Res 98(12):1520–1527

    PubMed  CAS  Google Scholar 

  • McNally BA, Prakriya M (2012) Permeation, selectivity and gating in store-operated CRAC channels. J Physiol 590(Pt 17):4179–4191

    PubMed  CAS  Google Scholar 

  • Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27(23):3092–3103

    PubMed  CAS  Google Scholar 

  • Meoli DF, White RJ (2010) Endothelin-1 induces pulmonary but not aortic smooth muscle cell migration by activating ERK1/2 MAP kinase. Can J Physiol Pharmacol 88(8):830–839

    PubMed  CAS  Google Scholar 

  • Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544

    PubMed  CAS  Google Scholar 

  • Moore TM, Brough GH, Babal P, Kelly JJ, Li M, Stevens T (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol 275(3 Pt 1):L574–L582

    PubMed  CAS  Google Scholar 

  • Muik M, Schindl R, Fahrner M, Romanin C (2012) Ca(2 +) release-activated Ca(2 +) (CRAC) current, structure, and function. Cell Mol Life Sci 69(24):4163–4176

    PubMed  CAS  Google Scholar 

  • Nakahashi T, Fukuo K, Nishimaki H, Hata S, Shimizu M, Suhara T, Takimoto M, Morimoto S, Ogihara T (1998) Endothelin-1 enhances nitric oxide-induced cell death in cultured vascular smooth-muscle cells. J Cardiovasc Pharmacol 31(Suppl 1):S351–S353

    PubMed  CAS  Google Scholar 

  • Naylor J, Al-Shawaf E, McKeown L, Manna PT, Porter KE, O’Regan D, Muraki K, Beech DJ (2011) TRPC5 channel sensitivities to antioxidants and hydroxylated stilbenes. J Biol Chem 286(7):5078–5086

    PubMed  CAS  Google Scholar 

  • Neufeld G, Tessler S, Gitay-Goren H, Cohen T, Levi BZ (1994) Vascular endothelial growth factor and its receptors. Prog Growth Factor Res 5(1):89–97

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium J Endothelial Cell Res 10(1):5–15

    CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    PubMed  CAS  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2 +)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    PubMed  CAS  Google Scholar 

  • Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273(17):10279–10287

    PubMed  CAS  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    PubMed  CAS  Google Scholar 

  • Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801

    PubMed  CAS  Google Scholar 

  • Pang X, Sun NL (2009) Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation. Acta Pharmacol Sin 30(5):537–544

    PubMed  CAS  Google Scholar 

  • Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287(6):L1303–L1313

    PubMed  CAS  Google Scholar 

  • Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38(6):744–749

    PubMed  CAS  Google Scholar 

  • Peiro C, Redondo J, Rodriguez-Martinez MA, Angulo J, Marin J, Sanchez-Ferrer CF (1995) Influence of endothelium on cultured vascular smooth muscle cell proliferation. Hypertension 25(4 Pt 2):748–751

    PubMed  CAS  Google Scholar 

  • Philipp S, Cavalie A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15(22):6166–6171

    PubMed  CAS  Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalie A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17(15):4274–4282

    PubMed  CAS  Google Scholar 

  • Plant TD, Schaefer M (2003) TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 33(5–6):441–450

    PubMed  CAS  Google Scholar 

  • Poteser M, Graziani A, Eder P, Yates A, Machler H, Romanin C, Groschner K (2008) Identification of a rare subset of adipose tissue-resident progenitor cells, which express CD133 and TRPC3 as a VEGF-regulated Ca2+entry channel. FEBS Lett 582(18):2696–2702

    PubMed  CAS  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595

    PubMed  CAS  Google Scholar 

  • Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108(26):10556–10561

    PubMed  CAS  Google Scholar 

  • Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. Faseb J 23(8):2425–2437

    PubMed  CAS  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    PubMed  CAS  Google Scholar 

  • Qin L, Zhao D, Xu J, Ren X, Terwilliger EF, Parangi S, Lawler J, Dvorak HF, Zeng H (2013) The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood

    Google Scholar 

  • Rees DD, Palmer RM, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86(9):3375–3378

    PubMed  CAS  Google Scholar 

  • Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39(5):375–390

    PubMed  CAS  Google Scholar 

  • Rodell TC, Cheronis JC, Ohnemus CL, Piermattei DJ, Repine JE (1987) Xanthine oxidase mediates elastase-induced injury to isolated lungs and endothelium. J Appl Physiol 63(5):2159–2163

    PubMed  CAS  Google Scholar 

  • Rowell J, Koitabashi N, Kass DA (2010) TRP-ing up heart and vessels: canonical transient receptor potential channels and cardiovascular disease. J cardiovasc transl res 3(5):516–524

    PubMed  Google Scholar 

  • Ryan US (1989) Endothelium as a transducing surface. J Mol Cell Cardiol 21(Suppl 1):85–90

    PubMed  CAS  Google Scholar 

  • Salido GM, Jardin I, Rosado JA (2011) The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv Exp Med Biol 704:413–433

    PubMed  CAS  Google Scholar 

  • Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A, Gudermann T, Adam D, Wu S, Freichel M, Flockerzi V, Uhlig S, Kuebler WM (2012) Lung endothelial Ca2+and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Respir Crit Care Med 185(2):160–170

    PubMed  CAS  Google Scholar 

  • Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451(1):35–42

    PubMed  CAS  Google Scholar 

  • Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275(23):17517–17526

    PubMed  CAS  Google Scholar 

  • Schaff UY, Dixit N, Procyk E, Yamayoshi I, Tse T, Simon SI (2010) Orai1 regulates intracellular calcium, arrest, and shape polarization during neutrophil recruitment in shear flow. Blood 115(3):657–666

    PubMed  Google Scholar 

  • Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2 +) entry pathways. Br J Pharmacol 167(8):1712–1722

    PubMed  CAS  Google Scholar 

  • Schlondorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296(3):C558–C569

    PubMed  CAS  Google Scholar 

  • Shi-Wen X, Denton CP, Dashwood MR, Holmes AM, Bou-Gharios G, Pearson JD, Black CM, Abraham DJ (2001) Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1. J Invest Dermatol 116(3):417–425

    PubMed  CAS  Google Scholar 

  • Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP (2012) TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and TRPC1-/- mice. Faseb J 26(1):409–419

    PubMed  CAS  Google Scholar 

  • Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153(1):13–19

    PubMed  CAS  Google Scholar 

  • Shimoda LA, Laurie SS (2013) Vascular remodeling in pulmonary hypertension. J Mol Med 91(3):297–309

    Google Scholar 

  • Shinde AV, Motiani RK, Zhang X, Abdullaev IF, Adam AP, Gonzalez-Cobos JC, Zhang W, Matrougui K, Vincent PA, Trebak M (2013) STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6 (267):ra18

    Google Scholar 

  • Smedlund K, Vazquez G (2008) Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 28(11):2049–2055

    PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280(48):39786–39794

    PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103(44):16586–16591

    PubMed  CAS  Google Scholar 

  • Stalcup SA, Davidson D, Mellins RB (1982) Endothelial cell functions in the hemodynamic responses to stress. Ann N Y Acad Sci 401:117–131

    PubMed  CAS  Google Scholar 

  • Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M (2012) Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 287(5):3530–3540

    PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    PubMed  CAS  Google Scholar 

  • Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Flockerzi V, Malik AB, Tiruppathi C (2012) The Ca(2 +) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2 +) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81(4):510–526

    PubMed  CAS  Google Scholar 

  • Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283(1):L144–L155

    PubMed  CAS  Google Scholar 

  • Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121(Pt 14):2301–2307

    PubMed  CAS  Google Scholar 

  • Thilo F, Vorderwulbecke BJ, Marki A, Krueger K, Liu Y, Baumunk D, Zakrzewicz A, Tepel M (2012) Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells. Hypertension 59(6):1232–1240

    PubMed  CAS  Google Scholar 

  • Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Takeshita A (2001) cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(11):1764–1769

    PubMed  CAS  Google Scholar 

  • Tolhurst G, Carter RN, Amisten S, Holdich JP, Erlinge D, Mahaut-Smith MP (2008) Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 19(4):308–313

    PubMed  CAS  Google Scholar 

  • Trebak M (2012) STIM/Orai signalling complexes in vascular smooth muscle. J Physiol 590(Pt 17):4201–4208

    PubMed  CAS  Google Scholar 

  • Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33(5–6):451–461

    PubMed  CAS  Google Scholar 

  • Ulloa A, Gonzales AL, Zhong M, Kim YS, Cantlon J, Clay C, Ku CY, Earley S, Sanborn BM (2009) Reduction in TRPC4 expression specifically attenuates G-protein coupled receptor-stimulated increases in intracellular calcium in human myometrial cells. Cell Calcium 46(1):73–84

    PubMed  CAS  Google Scholar 

  • Ungvari Z, Wolin MS, Csiszar A (2006) Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling? Antioxid Redox Signal 8(7–8):1121–1129

    PubMed  CAS  Google Scholar 

  • Usatyuk PV, Natarajan V (2004) Role of mitogen-activated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells. J Biol Chem 279(12):11789–11797

    PubMed  CAS  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158(6):1089–1096

    PubMed  CAS  Google Scholar 

  • Vestweber D (2012) Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci 1257:184–192

    PubMed  CAS  Google Scholar 

  • Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48(6):1329–1334

    PubMed  CAS  Google Scholar 

  • Wamhoff BR, Bowles DK, Owens GK (2006) Excitation-transcription coupling in arterial smooth muscle. Circ Res 98(7):868–878

    PubMed  CAS  Google Scholar 

  • Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J (2009) Inhibition of SOC/Ca2 +/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 10:123

    PubMed  Google Scholar 

  • Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC (2004) TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287(2):C357–C364

    PubMed  CAS  Google Scholar 

  • Wang Y, Deng X, Hewavitharana T, Soboloff J, Gill DL (2008a) Stim, ORAI and TRPC channels in the control of calcium entry signals in smooth muscle. Clin Exp Pharmacol Physiol 35(9):1127–1133

    PubMed  CAS  Google Scholar 

  • Wang YX, Wang J, Wang C, Liu J, Shi LP, Xu M (2008b) Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells. J Membr Biol 223(3):151–159

    PubMed  CAS  Google Scholar 

  • Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118(3):337–351

    PubMed  CAS  Google Scholar 

  • Wedgwood S, Dettman RW, Black SM (2001) ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 281(5):L1058–L1067

    PubMed  CAS  Google Scholar 

  • Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HH, Seeger W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A (2012) Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat commun 3:649

    PubMed  Google Scholar 

  • Wong CO, Sukumar P, Beech DJ, Yao X (2010) Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells. Pflugers Arch 460(1):121–130

    PubMed  CAS  Google Scholar 

  • Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42(2):205–211

    PubMed  CAS  Google Scholar 

  • Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca(2 +) channels in native vascular smooth muscle cells. Circ Res 88(1):84–87

    PubMed  CAS  Google Scholar 

  • Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah S, Dedman AM, Flemming PK, McHugh D, Naylor J, Cheong A, Bateson AN, Munsch CM, Porter KE, Beech DJ (2006) A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98(11):1381–1389

    PubMed  CAS  Google Scholar 

  • Yang B, Gwozdz T, Dutko-Gwozdz J, Bolotina VM (2012) Orai1 and Ca2+ -independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells. Am J Physiol Cell Physiol 302(5):C748–C756

    PubMed  CAS  Google Scholar 

  • Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434

    PubMed  CAS  Google Scholar 

  • Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290(6):L1267–L1276

    PubMed  CAS  Google Scholar 

  • Yao H, Peng F, Fan Y, Zhu X, Hu G, Buch SJ (2009) TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death Differ 16(12):1681–1693

    PubMed  CAS  Google Scholar 

  • Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97(9):853–863

    PubMed  CAS  Google Scholar 

  • Yip H, Chan WY, Leung PC, Kwan HY, Liu C, Huang Y, Michel V, Yew DT, Yao X (2004) Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122(6):553–561

    PubMed  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607

    PubMed  CAS  Google Scholar 

  • Yoshida T, Owens GK (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96(3):280–291

    PubMed  CAS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284(2):C316–C330

    PubMed  CAS  Google Scholar 

  • Yuan D, He P (2012) Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules. J Appl Physiol 113(7):1110–1120

    PubMed  Google Scholar 

  • Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3(4):221–225

    CAS  Google Scholar 

  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    PubMed  CAS  Google Scholar 

  • Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2012) Open structure of the Ca2+ gating ring in the high-conductance Ca2+ -activated K+ channel. Nature 481(7379):94–97

    CAS  Google Scholar 

  • Zhang J, Hu H, Palma NL, Harrison JK, Mubarak KK, Carrie RD, Alnuaimat H, Shen X, Luo D, Patel JM (2012) Hypoxia-induced endothelial CX3CL1 triggers lung smooth muscle cell phenotypic switching and proliferative expansion. Am J Physiol Lung Cell Mol Physiol 303(10):L912–L922

    PubMed  CAS  Google Scholar 

  • Zhang S, Remillard CV, Fantozzi I, Yuan JX (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287(5):C1192–C1201

    PubMed  CAS  Google Scholar 

  • Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M (2011) Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 109(5):534–542

    PubMed  CAS  Google Scholar 

  • Zhao X, Moloughney JG, Zhang S, Komazaki S, Weisleder N (2012) Orai1 mediates exacerbated Ca(2 +) entry in dystrophic skeletal muscle. PLoS ONE 7(11):e49862

    PubMed  CAS  Google Scholar 

  • Zhu JH, Chen CL, Flavahan S, Harr J, Su B, Flavahan NA (2011) Cyclic stretch stimulates vascular smooth muscle cell alignment by redox-dependent activation of Notch3. Am J Physiol Heart Circ Physiol 300(5):H1770–H1780

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Poteser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poteser, M., Krenn, S., Groschner, K. (2014). Role of TRPC and Orai Channels in Vascular Remodeling . In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_23

Download citation

Publish with us

Policies and ethics