Skip to main content

Auxiliary β-Subunits of L-Type Ca2+ Channels in Heart Failure

  • Chapter
  • First Online:
Pathologies of Calcium Channels

Abstract

The cardiac L-type Ca2+ channel consists of an ion-conducting channel pore Cav1.2 and auxiliary subunits, namely α2δ- and β-subunits (Cavβ). Four Cavβ isoforms and several splice variants are known to date. Cavβ subunits modulate L-type Ca2+ channels by significantly increasing its activity with Cavβ2 isoforms having the strongest effect. Furthermore, Cavβ subunits are involved in modulation of membrane expression of the channel pore Cav1.2. In human heart failure, density of Ca2+ currents mediated by L-type Ca2+ channels is unchanged and the activity of single L-type Ca2+ channels is significantly increased suggesting a reduced channel expression. The “heart failure phenotype” of single-channel gating might be explained by an altered expression pattern of Cavβ subunits. Indeed cardiac Cavβ2 isoforms are upregulated in human heart failure. Targeted overexpression of Cavβ2 subunits in murine hearts mimicked L-type Ca2+ channel features typical for human heart failure and furthermore induced cardiac hypertrophy and contractile dysfunction. Lowering cardiac Cavβ2 expression attenuated pressure-induced ventricular hypertrophy in rats and appeared to be well tolerated in mice. These findings strongly support the idea that Cavβ2 subunits are of pathophysiological relevance for development of cardiac hypertrophy and heart failure and a promising target for future treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14(2):173–180

    Article  PubMed  CAS  Google Scholar 

  • Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca(2 +) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103(19):7500–7505

    Article  PubMed  CAS  Google Scholar 

  • Balijepalli RC, Lokuta AJ, Maertz NA, Buck JM, Haworth RA, Valdivia HH, Kamp TJ (2003) Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res 59(1):67–77

    Article  PubMed  CAS  Google Scholar 

  • Beetz N, Hein L, Meszaros J, Gilsbach R, Barreto F, Meissner M, Hoppe UC, Schwartz A, Herzig S, Matthes J (2009) Transgenic simulation of human heart failure-like L-type Ca2 + -channels: implications for fibrosis and heart rate in mice. Cardiovasc Res 84(3):396–406

    Article  PubMed  CAS  Google Scholar 

  • Bénitah JP, Alvarez JL, Gómez AM (2010) L-type Ca(2 +) current in ventricular cardiomyocytes. J Mol Cell Cardiol 48(1):26–36

    Article  PubMed  Google Scholar 

  • Bénitah JP, Gómez AM, Fauconnier J, Kerfant BG, Perrier E, Vassort G, Richard S (2002) Voltage-gated Ca2+ currents in the human pathophysiologic heart: a review. Basic Res Cardiol 97(Suppl 1):I11–I18

    PubMed  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  • Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2 + channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52(2):376–387

    Article  PubMed  CAS  Google Scholar 

  • Beuckelmann DJ (1997) Contributions of Ca(2 +)-influx via the L-type Ca(2 +)-current and Ca(2 +)-release from the sarcoplasmic reticulum to [Ca2 +]i-transients in human myocytes. Basic Res Cardiol 92(Suppl 1):105–110

    Article  PubMed  CAS  Google Scholar 

  • Beuckelmann DJ, Erdmann E (1992) Ca(2 +)-currents and intracellular [Ca2 +]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Res Cardiol 87(Suppl 1):235–243

    PubMed  Google Scholar 

  • Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85(3):1046–1055

    Article  PubMed  CAS  Google Scholar 

  • Bito V, Heinzel FR, Biesmans L, Antoons G, Sipido KR (2008) Crosstalk between L-type Ca2 + channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res 77(2):315–324

    Article  PubMed  CAS  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317

    Article  PubMed  CAS  Google Scholar 

  • Bodi I, Muth JN, Hahn HS, Petrashevskaya NN, Rubio M, Koch SE, Varadi G, Schwartz A (2003) Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure: complex nature of K + current changes and actionpotential duration. J Am Coll Cardiol 41(9):1611–1622

    Article  PubMed  CAS  Google Scholar 

  • Brandmayr J, Poomvanicha M, Domes K, Ding J, Blaich A, Wegener JW, Moosmang S, Hofmann F (2012) Deletion of the C-terminal phosphorylation sites in the cardiac β-subunit does not affect the basic β-adrenergic response of the heart and the Ca(v)1.2 channel. J Biol Chem 287(27):22584–22592

    Article  PubMed  CAS  Google Scholar 

  • Bünemann M, Gerhardstein BL, Gao T, Hosey MM (1999) Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem 274(48):33851–33854

    Article  PubMed  Google Scholar 

  • Buraei Z, Yang J (2010) The ß subunit of voltage-gated Ca2 + channels. Physiol Rev 90(4):1461–1506

    Article  PubMed  CAS  Google Scholar 

  • Burgess DL, Jones JM, Meisler MH, Noebels JL (1997) Mutation of the Ca2 + channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88(3):385–392

    Article  PubMed  CAS  Google Scholar 

  • Cannell MB, Crossman DJ, Soeller C (2006) Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J Muscle Res Cell Motil 27(5–7):297–306

    Article  PubMed  CAS  Google Scholar 

  • Catalucci D, Zhang DH, DeSantiago J, Aimond F, Barbara G, Chemin J, Bonci D, Picht E, Rusconi F, Dalton ND, Peterson KL, Richard S, Bers DM, Brown JH, Condorelli G (2009) Akt regulates L-type Ca2 + channel activity by modulating Cavalpha1 protein stability. J Cell Biol 184(6):923–933

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2010) Signaling complexes of voltage-gated sodium and calcium channels. Neurosci Lett 486(2):107–116

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57(4):411–425

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Zhang J, Tseng YH, Xie CQ, Ilany J, Brüning JC, Sun Z, Zhu X, Cui T, Youker KA, Yang Q, Day SM, Kahn CR, Chen YE (2007) Rad GTPase deficiency leads to cardiac hypertrophy. Circulation 116(25):2976–2983

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50(3):460–470

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Piacentino V 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR (2002) L-type Ca2 + channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91(6):517–524

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Zhang X, Harris DM, Piacentino V 3rd, Berretta RM, Margulies KB, Houser SR (2008) Reduced effects of BAY K 8644 on L-type Ca2 + current in failing human cardiac myocytes are related to abnormal adrenergic regulation. Am J Physiol Heart Circ Physiol 294(5):H2257–H2267

    Article  PubMed  CAS  Google Scholar 

  • Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM (1995) Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2 + channels. J Biol Chem 270(50):30036–30044

    Article  PubMed  CAS  Google Scholar 

  • Chu PJ, Larsen JK, Chen CC, Best PM (2004) Distribution and relative expression levels of calcium channel beta subunits within the chambers of the rat heart. J Mol Cell Cardiol 36(3):423–434

    Article  PubMed  CAS  Google Scholar 

  • Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marbán E (2007) Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res 101(2):166–175

    Article  PubMed  CAS  Google Scholar 

  • Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marbán E, Yue DT (2002) Novel functional properties of Ca(2 +) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 541(Pt 2):435–452

    Article  PubMed  CAS  Google Scholar 

  • Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA (2008) The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 20(2):292–300

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 89(2):411–452

    Article  PubMed  CAS  Google Scholar 

  • De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M, Catterall WA (1996) Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochemistry 35(32):10392–10402

    Article  PubMed  Google Scholar 

  • Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35(6):599–620

    Article  PubMed  CAS  Google Scholar 

  • Emrick MA, Sadilek M, Konoki K, Catterall WA (2010) Beta-adrenergic-regulated phosphorylation of the skeletal muscle Ca(V)1.1 channel in the fight-or-flight response. Proc Natl Acad Sci U S A 107(43):18712–18717

    Article  PubMed  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25(3):533–535

    Article  PubMed  CAS  Google Scholar 

  • Foell JD, Balijepalli RC, Delisle BP, Yunker AM, Robia SL, Walker JW, McEnery MW, January CT, Kamp TJ (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17(2):183–200

    Article  PubMed  CAS  Google Scholar 

  • Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3(141):ra70

    Google Scholar 

  • Ganesan AN, Maack C, Johns DC, Sidor A, O’Rourke B (2006) Beta-adrenergic stimulation of L-type Ca2 + channels in cardiac myocytes requires the distal carboxyl terminus of alpha1C but not serine 1928. Circ Res 98(2):e11–18

    Google Scholar 

  • Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM (1997) cAMP-dependent regulation of cardiac L-type Ca2 + channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19(1):185–196

    Article  PubMed  CAS  Google Scholar 

  • Gómez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806

    Article  PubMed  Google Scholar 

  • Gonzalez-Gutierrez G, Miranda-Laferte E, Neely A, Hidalgo P (2007) The Src homology 3 domain of the beta-subunit of voltage-gated calcium channels promotes endocytosis via dynamin interaction. J Biol Chem 282(4):2156–21562

    Article  PubMed  CAS  Google Scholar 

  • Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca²+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122(1):280–290

    Article  PubMed  CAS  Google Scholar 

  • Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R, Powers PA (1996) Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci U S A 93(24):13961–13966

    Article  PubMed  CAS  Google Scholar 

  • Groner F, Rubio M, Schulte-Euler P, Matthes J, Khan IF, Bodi I, Koch SE, Schwartz A, Herzig S (2004) Single-channel gating and regulation of human L-type calcium channels in cardiomyocytes of transgenic mice. Biochem Biophys Res Commun 314(3):878–884

    Article  PubMed  CAS  Google Scholar 

  • Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ (2006) L-type Ca2 + channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell 23(5):641–650

    Article  PubMed  CAS  Google Scholar 

  • Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61(1):70–76

    Article  PubMed  CAS  Google Scholar 

  • Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85(5):1599–1613

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Bartel S, Karczewski P, Morano I, Krause EG (1996) In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines. Mol Cell Biochem 163–164:99–106

    Article  PubMed  Google Scholar 

  • Haase H, Karczewski P, Beckert R, Krause EG (1993) Phosphorylation of the L-type calcium channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett 335(2):217–222

    Article  PubMed  CAS  Google Scholar 

  • He J, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R, Kamp TJ (2001) Reduction in density of transverse tubules and L-type Ca(2 +) channels in canine tachycardia-induced heart failure. Cardiovasc Res 49(2):298–307

    Article  PubMed  CAS  Google Scholar 

  • Heinzel FR, Bito V, Biesmans L, Wu M, Detre E, von Wegner F, Claus P, Dymarkowski S, Maes F, Bogaert J, Rademakers F, D’hooge J, Sipido K (2008) Remodeling of T-tubules and reduced synchrony of Ca2 + release in myocytes from chronically ischemic myocardium. Circ Res 102(3):338–346

    Article  PubMed  CAS  Google Scholar 

  • Hersel J, Jung S, Mohacsi P, Hullin R (2002) Expression of the L-type calcium channel in human heart failure. Basic Res Cardiol 97(Suppl 1):I4–I10

    PubMed  Google Scholar 

  • Herzig S, Khan IF, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R (2007) Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. FASEB J 21(7):1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80(1):173–210

    PubMed  CAS  Google Scholar 

  • Hullin R, Asmus F, Ludwig A, Hersel J, Boekstegers P (1999) Subunit expression of the cardiac L-type calcium channel is differentially regulated in diastolic heart failure of the cardiac allograft. Circulation 100(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Hullin R, Khan IF, Wirtz S, Mohacsi P, Varadi G, Schwartz A, Herzig S (2003) Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278(24):21623–21630

    Article  PubMed  CAS  Google Scholar 

  • Hullin R, Matthes J, von Vietinghoff S, Bodi I, Rubio M, D’Souza K, Friedrich Khan I, Rottländer D, Hoppe UC, Mohacsi P, Schmitteckert E, Gilsbach R, Bünemann M, Hein L, Schwartz A, Herzig S (2007) Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2) + channels leads to single-channel activity characteristic of heart failure. PLoS ONE 2(3):e292

    Article  PubMed  Google Scholar 

  • Hulme JT, Westenbroek RE, Scheuer T, Catterall WA (2006) Phosphorylation of serine 1928 in the distal C-terminal domain of cardiac Cav1.2 channels during beta1-adrenergic regulation. Proc Natl Acad Sci U S A 103(44):16574–16579

    Article  PubMed  CAS  Google Scholar 

  • Jaleel N, Nakayama H, Chen X, Kubo H, MacDonnell S, Zhang H, Berretta R, Robbins J, Cribbs L, Molkentin JD, Houser SR (2008) Ca2 + influx through T- and L-type Ca2 + channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circ Res 103(10):1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Jangsangthong W, Kuzmenkina E, Böhnke AK, Herzig S (2011) Single-channel monitoring of reversible L-type Ca(2 +) channel Ca(V)α(1)-Ca(V)β subunit interaction. Biophys J 101(11):2661–2670

    Article  PubMed  CAS  Google Scholar 

  • Jangsangthong W, Kuzmenkina E, Khan IF, Matthes J, Hullin R, Herzig S (2010) Inactivation of L-type calcium channels is determined by the length of the N terminus of mutant beta(1) subunits. Pflugers Arch 459(3):399–411

    Article  PubMed  CAS  Google Scholar 

  • Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Klugbauer N, Marais E, Hofmann F (2003) Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenerg Biomembr 35(6):639–647

    Article  PubMed  CAS  Google Scholar 

  • Koval OM, Guan X, Wu Y, Joiner ML, Gao Z, Chen B, Grumbach IM, Luczak ED, Colbran RJ, Song LS, Hund TJ, Mohler PJ, Anderson ME (2010) Cav1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A 107(11):4996–5000

    Article  PubMed  CAS  Google Scholar 

  • Lemke T, Welling A, Christel CJ, Blaich A, Bernhard D, Lenhardt P, Hofmann F, Moosmang S (2008) Unchanged beta-adrenergic stimulation of cardiac L-type calcium channels in Ca v 1.2 phosphorylation site S1928A mutant mice. J Biol Chem 283(50):34738–34744

    Article  PubMed  CAS  Google Scholar 

  • Link S, Meissner M, Held B, Beck A, Weissgerber P, Freichel M, Flockerzi V (2009) Diversity and developmental expression of L-type calcium channel beta2 proteins and their influence on calcium current in murine heart. J Biol Chem 284(44):30129–30137

    Article  PubMed  CAS  Google Scholar 

  • Louch WE, Bito V, Heinzel FR, Macianskiene R, Vanhaecke J, Flameng W, Mubagwa K, Sipido KR (2004) Reduced synchrony of Ca2 + release with loss of T-tubules-a comparison to Ca2 + release in human failing cardiomyocytes. Cardiovasc Res 62(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca² + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674

    Article  PubMed  CAS  Google Scholar 

  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74(2):365–507

    PubMed  CAS  Google Scholar 

  • Meissner M, Weissgerber P, Londoño JE, Prenen J, Link S, Ruppenthal S, Molkentin JD, Lipp P, Nilius B, Freichel M, Flockerzi V (2011) Moderate calcium channel dysfunction in adult mice with inducible cardiomyocyte-specific excision of the cacnb2 gene. J Biol Chem 286(18):15875–15882

    Article  PubMed  CAS  Google Scholar 

  • Mewes T, Ravens U (1994) L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol 26(10):1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Miranda-Laferte E, Gonzalez-Gutierrez G, Schmidt S, Zeug A, Ponimaskin EG, Neely A, Hidalgo P (2011) Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis. J Biol Chem 286(25):22203–22210

    Article  PubMed  CAS  Google Scholar 

  • Miriyala J, Nguyen T, Yue DT, Colecraft HM (2008) Role of Cavbeta subunits, and lack of functional reserve, in protein kinase A modulation of cardiac Cav1.2 channels. Circ Res 102(7):e54–e64

    Article  PubMed  CAS  Google Scholar 

  • Mitterdorfer J, Froschmayr M, Grabner M, Moebius FF, Glossmann H, Striessnig J (1996) Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel alpha 1 subunits. Biochemistry 35(29):9400–9406

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee R, Spinale FG (1998) L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol 30(10):1899–1916

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Yamamura H, Suzuki T, Kang MG, Ohya S, Murakami A, Miyoshi I, Sasano H, Muraki K, Hano T, Kasai N, Nakayama S, Campbell KP, Flockerzi V, Imaizumi Y, Yanagisawa T, Iijima T (2003) Modified cardiovascular L-type channels in mice lacking the voltage-dependent Ca2 + channel beta3 subunit. J Biol Chem 278(44):43261–43267

    Article  PubMed  CAS  Google Scholar 

  • Muth JN, Bodi I, Lewis W, Varadi G, Schwartz A (2001) A Ca(2 +)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation 103(1):140–147

    Article  PubMed  CAS  Google Scholar 

  • Muth JN, Yamaguchi H, Mikala G, Grupp IL, Lewis W, Cheng H, Song LS, Lakatta EG, Varadi G, Schwartz A (1999) Cardiac-specific overexpression of the alpha(1) subunit of the L-type voltage-dependent Ca(2 +) channel in transgenic mice. Loss of isoproterenol-induced contraction. J Biol Chem 274(31):21503–21506

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BH, Hewett TE, Robbins J, Houser SR, Molkentin JD (2007) Ca2 + - and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117(9):2431–2444

    Article  PubMed  CAS  Google Scholar 

  • Namkung Y, Smith SM, Lee SB, Skrypnyk NV, Kim HL, Chin H, Scheller RH, Tsien RW, Shin HS (1998) Targeted disruption of the Ca2 + channel beta3 subunit reduces N- and L-type Ca2 + channel activity and alters the voltage-dependent activation of P/Q-type Ca2 + channels in neurons. Proc Natl Acad Sci U S A 95(20):12010–12015

    Article  PubMed  CAS  Google Scholar 

  • Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25(2):282–291

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda AE, Wie XY, Birnbaumer L (1992) Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem 267(3):1792–1797

    PubMed  CAS  Google Scholar 

  • Pitt GS, Dun W, Boyden PA (2006) Remodeled cardiac calcium channels. J Mol Cell Cardiol 41(3):373–388

    Article  PubMed  CAS  Google Scholar 

  • Reimer D, Huber IG, Garcia ML, Haase H, Striessnig J (2000) beta subunit heterogeneity of L-type Ca(2 +) channels in smooth muscle tissues. FEBS Lett 467(1):65–69

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J (1998) Ca2 + currents in compensated hypertrophy and heart failure. Cardiovasc Res 37(2):300–311

    Article  PubMed  CAS  Google Scholar 

  • Schröder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH, Weil J, Herzig S (1998) Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98(10):969–976

    Article  PubMed  Google Scholar 

  • Serikov V, Bodi I, Koch SE, Muth JN, Mikala G, Martinov SG, Haase H, Schwartz A (2002) Mice with cardiac-specific sequestration of the beta-subunit of the L-type calcium channel. Biochem Biophys Res Commun 293(5):1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Song LS, Guia A, Muth JN, Rubio M, Wang SQ, Xiao RP, Josephson IR, Lakatta EG, Schwartz A, Cheng H (2002) Ca(2 +) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2 +) channel. Circ Res 90(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Zhang X, Li Y, Guan Y, Ai X, Szeto C, Nakayama H, Zhang H, Ge S, Molkentin JD, Houser SR, Chen X (2010) Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity. Am J Physiol Heart Circ Physiol 299(2):H519–H528

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli GF, Marbán E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42(2):270–283

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC (1986) Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 18(7):691–710

    Article  PubMed  CAS  Google Scholar 

  • Wijnhoven TJ, van der Heyden MA, Opthof T (2005) Molecular aspects of adrenergic modulation of cardiac L-type Ca2 + channels. Cardiovasc Res 65(1):28–39

    Article  PubMed  Google Scholar 

  • Wang W, Zhang H, Gao H, Kubo H, Berretta RM, Chen X, Houser SR (2010) {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways. Am J Physiol Heart Circ Physiol 299(2):H322–H331

    Article  PubMed  CAS  Google Scholar 

  • Weissgerber P, Held B, Bloch W, Kaestner L, Chien KR, Fleischmann BK, Lipp P, Flockerzi V, Freichel M (2006) Reduced cardiac L-type Ca2 + current in Ca(V)beta2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ Res 99(7):749–757

    Article  PubMed  CAS  Google Scholar 

  • Yada H, Murata M, Shimoda K, Yuasa S, Kawaguchi H, Ieda M, Adachi T, Murata M, Ogawa S, Fukuda K (2007) Dominant negative suppression of Rad leads to QT prolongation and causes ventricular arrhythmias via modulation of L-type Ca2 + channels in the heart. Circ Res 101(1):69–77

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Xu X, Kernan T, Wu V, Colecraft HM (2010) Rem, a member of the RGK GTPases, inhibits recombinant Cav1.2 channels using multiple mechanisms that require distinct conformations of the GTPase. J Physiol 588(Pt 10):1665–1681

    Article  PubMed  CAS  Google Scholar 

  • Yue DT, Herzig S, Marban E (1990) Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci U S A 87(2):753–757

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chen X, Gao E, MacDonnell SM, Wang W, Kolpakov M, Nakayama H, Zhang X, Jaleel N, Harris DM, Li Y, Tang M, Berretta R, Leri A, Kajstura J, Sabri A, Koch WJ, Molkentin JD, Houser SR (2010) Increasing cardiac contractility after myocardial infarction exacerbates cardiac injury and pump dysfunction. Circ Res 107(6):800–809

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chang L, Chen C, Zhang M, Luo Y, Hamblin M, Villacorta L, Xiong JW, Chen YE, Zhang J, Zhu X (2011) Rad GTPase inhibits cardiac fibrosis through connective tissue growth factor. Cardiovasc Res 91(1):90–98

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lori Borgal for language editing of the manuscript. The permissions of AHA Journals to show Fig. 14.2 taken from Schröder et al. (Circulation 98(10):969–976) and by Oxford Journals to show Fig. 14.3 taken from Beetz et al. (Cardiovasc Res 84(3):396–406; doi: 10.1093/cvr/cvp251) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Herzig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthes, J., Herzig, S. (2014). Auxiliary β-Subunits of L-Type Ca2+ Channels in Heart Failure . In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_14

Download citation

Publish with us

Policies and ethics