Skip to main content

Best Upgrade Plans for Large Road Networks

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8098))

Included in the following conference series:

Abstract

In this paper, we consider a new problem in the context of road network databases, named Resource Constrained Best Upgrade Plan computation (BUP, for short). Consider a transportation network (weighted graph) G where a subset of the edges are upgradable, i.e., for each such edge there is a cost, which if spent, the weight of the edge can be reduced to a specific new value. Given a source and a destination in G, and a budget (resource constraint) B, the BUP problem is to identify which upgradable edges should be upgraded so that the shortest path distance between source and destination (in the updated network) is minimized, without exceeding the available budget for the upgrade. In addition to transportation networks, the BUP query arises in other domains too, such as telecommunications. We propose a framework for BUP processing and evaluate it with experiments on large, real road networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, R., Walrand, J.: An efficient nash-implementation mechanism for network resource allocation. Automatica 46(8), 1276–1283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, L.: Upgrading arc problem with budget constraint. In: 43rd Annual Southeast Regional Conference, vol. 1, pp. 150–152 (2005)

    Google Scholar 

  3. Nepal, K.P., Park, D., Choi, C.H.: Upgrading arc median shortest path problem for an urban transportation network. Journal of Transportation Engineering 135(10), 783–790 (2009)

    Google Scholar 

  4. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)

    Google Scholar 

  5. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for k-nearest neighbor search in moving object databases. GeoInformatica 7(3), 255–273 (2003)

    Article  Google Scholar 

  6. Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: GIS, pp. 1–8 (2003)

    Google Scholar 

  7. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In: ICDE, pp. 796–805 (2007)

    Google Scholar 

  8. Stojanovic, D., Papadopoulos, A.N., Predic, B., Djordjevic-Kajan, S., Nanopoulos, A.: Continuous range monitoring of mobile objects in road networks. Data Knowl. Eng. 64(1), 77–100 (2008)

    Article  Google Scholar 

  9. Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical graph embedding for efficient query processing in very large traffic networks. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5) (2002)

    Google Scholar 

  11. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp. 205–216 (2008)

    Google Scholar 

  12. Hills, A.: Mentor: an algorithm for mesh network topological optimization and routing. IEEE Transactions on Communications 39(11), 98–107 (2001)

    Google Scholar 

  13. Amaldi, E., Capone, A., Cesana, M., Malucelli, F.: Optimization models for the radio planning of wireless mesh networks. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C., de McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 287–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Boorstyn, R., Frank, H.: Large-scale network topological optimization. IEEE Transactions on Communications 25(1), 29–47 (1977)

    Article  MATH  Google Scholar 

  15. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-aware overlay construction and server selection. In: INFOCOM (2002)

    Google Scholar 

  16. Kershenbaum, A., Kermani, P., Grover, G.A.: Mentor: an algorithm for mesh network topological optimization and routing. IEEE Transactions on Communications 39(4), 503–513 (1991)

    Article  Google Scholar 

  17. Minoux, M.: Networks synthesis and optimum network design problems: Models, solution methods and applications. Networks 19, 313–360 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z., Mohapatra, P.: On investigating overlay service topologies. Computer Networks 51(1), 54–68 (2007)

    Article  MATH  Google Scholar 

  19. Capone, A., Elias, J., Martignon, F.: Models and algorithms for the design of service overlay networks. IEEE Transactions on Network and Service Management 5(3), 143–156 (2008)

    Article  Google Scholar 

  20. Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study of reconfiguration policies. In: INFOCOM (2006)

    Google Scholar 

  21. Roy, S., Pucha, H., Zhang, Z., Hu, Y.C., Qiu, L.: Overlay node placement: Analysis, algorithms and impact on applications. In: ICDCS, p. 53 (2007)

    Google Scholar 

  22. Alumur, S.A., Kara, B.Y.: Network hub location problems: The state of the art. European Journal of Operational Research 190(1), 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29(3), 407–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maillé, P., Tuffin, B.: Multi-bid auctions for bandwidth allocation in communication networks. In: INFOCOM (2004)

    Google Scholar 

  25. Ben-Moshe, B., Omri, E., Elkin, M.: Optimizing budget allocation in graphs. In: CCCG (2011)

    Google Scholar 

  26. Campbell, A.M., Lowe, T.J., Zhang, L.: Upgrading arcs to minimize the maximum travel time in a network. Networks 47(2), 72–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10, 293–309 (1980)

    Article  MathSciNet  Google Scholar 

  28. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem. Networks 19, 379–394 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  30. Ribeiro, C.C., Minoux, M.: A heuristic approach to hard constrained shortest path problems. Discrete Applied Mathematics 10(2), 125–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17(1), 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Operations Research Letters 28(5), 213–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. Networks 42, 135–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  35. Martins, E.Q.V., Pascoal, M.M.B.: A new implementation of yen’s ranking loopless paths algorithm. 4OR 1(2) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Y., Mouratidis, K. (2013). Best Upgrade Plans for Large Road Networks. In: Nascimento, M.A., et al. Advances in Spatial and Temporal Databases. SSTD 2013. Lecture Notes in Computer Science, vol 8098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40235-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40235-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40234-0

  • Online ISBN: 978-3-642-40235-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics