Skip to main content

Group Action Induced Distances on Spaces of High-Dimensional Linear Stochastic Processes

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

This paper studies the geometrization of spaces of stochastic processes. Our main motivation is the problem of pattern recognition in high-dimensional time-series data (e.g., video sequence classification and clustering). First, we review some existing approaches to defining distances on spaces of stochastic processes. Next, we focus on the space of processes generated by (stochastic) linear dynamical systems (LDSs) of fixed size and order (this space is a natural choice for the pattern recognition problem). When the LDSs are represented in state-space form, the space of LDSs can be considered as the base space of a principal fiber bundle. We use this fact to introduce a large class of easy-to-compute group action-induced distances on the space of LDSs and hence on the corresponding space of stochastic processes. We call such a distance an alignment distance. One of our aims is to demonstrate the usefulness of control-theoretic tools in problems related to stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afsari, B., Chaudhry, R., Ravichandran, A., Vidal, R.: Group action induced distances for averaging and clustering linear dynamical systems with applications to the analysis of dynamic visual scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  2. Amari, S.I.: Differential geometry of a parametric family of invertible linear systems-Riemannian metric, dual affine connections, and divergence. Mathematical Systems Theory 20, 53–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. American Mathematical Society (2000)

    Google Scholar 

  4. Barbaresco, F.: Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, Mostow/Berger fibration and Frechet median. In: Matrix Information Geometry, pp. 199–255 (2013)

    Google Scholar 

  5. Béjar, B., Zappella, L., Vidal, R.: Surgical gesture classification from video data. In: Medical Image Computing and Comp. Assisted Intervention, pp. 34–41 (2012)

    Google Scholar 

  6. Chaudhry, R., Vidal, R.: Recognition of visual dynamical processes: Theory, kernels and experimental evaluation. Technical Report 09-01, Department of Computer Science. Johns Hopkins University (2009)

    Google Scholar 

  7. Cock, K.D., Moor, B.D.: Subspace angles and distances between ARMA models. System and Control Letters 46(4), 265–270 (2002)

    Article  MATH  Google Scholar 

  8. Deistler, M., Anderson, B.O., Filler, A., Zinner, C., Chen, W.: Generalized linear dynamic factor models: An approach via singular autoregressions. European Journal of Control 3, 211–224 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hanzon, B.: Identifiability, Recursive Identification and Spaces of Linear Dynamical Systems, vol. 63-64. Centrum voor Wiskunde en Informatica, CWI (1989)

    Google Scholar 

  10. Helmke, U.: Balanced realizations for linear systems: a variational approach. SIAM Journal on Control and Optimization 31(1), 1–15 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, X., Ning, L., Georgiou, T.: Distances and Riemannian metrics for multivariate spectral densities. IEEE Trans. on Aut. Control 57(7), 1723–1735 (2012)

    Article  MathSciNet  Google Scholar 

  12. Jimenez, N.D., Afsari, B., Vidal, R.: Fast Jacobi-type algorithm for computing distances between linear dynamical systems. In: European Control Conference (2013)

    Google Scholar 

  13. Kazakos, D., Papantoni-Kazakos, P.: Spectral distance measures between Gaussian processes. IEEE Transactions on Automatic Control 25(5), 950–959 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kendall, D.G., Barden, D., Carne, T.K., Le., H.: Shape and Shape Theory. In: Probability and Statistics. Wiley Series. John Wiley & Sons (1999)

    Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry Volume I. Wiley Classics Library Edition. John Wiley & Sons (1963)

    Google Scholar 

  16. Krishnaprasad, P.S., Martin, C.F.: On families of systems and deformations. International Journal of Control 38(5), 1055–1079 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer (2002)

    Google Scholar 

  18. Liao, T.W.: Clustering time series data – a survey. Pattern Recognition 38, 1857–1874 (2005)

    Article  MATH  Google Scholar 

  19. Martin, A.: A metric for ARMA processes. IEEE Trans. on Signal Processing 48(4), 1164–1170 (2000)

    Article  MATH  Google Scholar 

  20. Piccolo, D.: A distance measure for classifying ARIMA models. Journal of Time Series Analysis 11(2), 153–164 (1990)

    Article  MATH  Google Scholar 

  21. Ravichandran, A., Vidal, R.: Video registration using dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 158–171 (2011)

    Article  Google Scholar 

  22. Ravishanker, N., Melnick, E.L., Tsai, C.-L.: Differential geometry of ARMA models. Journal of Time Series Analysis 11(3), 259–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rozanov, Y.A.: Stationary random processes. Holden-Day (1967)

    Google Scholar 

  24. Vishwanathan, S., Smola, A., Vidal, R.: Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. International Journal of Computer Vision 73(1), 95–119 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afsari, B., Vidal, R. (2013). Group Action Induced Distances on Spaces of High-Dimensional Linear Stochastic Processes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics