Skip to main content

Quantitative Approaches to Phylogenetics

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

This chapter reviews Hennigian, maximum likelihood, and Bayesian approaches to quantitative phylogenetic analysis and discusses their strengths and weaknesses and protocols for assessing the relative robustness of one’s results. Hennigian approaches are justified by the Darwinian concepts of phylogenetic conservatism and the cohesion of homologies, embodied in Hennig’s Auxiliary Principle, and applied using outgroup comparisons. They use parsimony as an epistemological tool. Maximum likelihood and Bayesian likelihood approaches are based on an ontological use of parsimony, choosing the simplest model possible to explain the data. All methods identify the same core of unambiguous data in any given data set, producing highly similar results. Disagreements most often stem from insufficient numbers of unambiguous characters in one or more of the data types. If analyses based on different types of data or using different methods of phylogeny reconstruction, or some combination of both, do not produce the same results, more data are needed. New developments in the application of phylogenetic methods in paleoanthropology have resulted in major advances in the understanding of morphological character development, modes of speciation, and the recent evolutionary history of the human species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams E (1972) Consensus techniques and the comparison of taxonomic trees. Syst Zool 21:390–397

    Article  Google Scholar 

  • Antón SC (2003) Natural history of Homo erectus. Yearb Phys Anthropol 46:126–170

    Article  Google Scholar 

  • Barnard GA, Bayes T (1958) Studies in the history of probability and statistics: IX. Thomas Bayes’s essay towards solving a problem in the doctrine of chances. Biometrika 45:293–315

    Article  Google Scholar 

  • Begun DR, Ward CV, Rose MD (eds) (1997) Function, phylogeny and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 389–415

    Google Scholar 

  • Bremer K (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803

    Article  CAS  Google Scholar 

  • Brillouin L (1962) Science and information theory, 2nd edn. Academic, New York

    Google Scholar 

  • Brooks DR (1981) Classifications as languages of empirical comparative biology. In: Funk VA, Brooks DR (eds) Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, New York, pp 61–70

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity. Chicago University Press, Chicago

    Book  Google Scholar 

  • Brooks DR, O’Grady RT, Wiley EO (1986) A measure of the information content of phylogenetic trees, and its use as an optimality criterion. Syst Zool 35:571–581

    Article  Google Scholar 

  • Camin JH, Sokal RR (1965) A method for deducing branching sequences in phylogeny. Evolution 19:311–326

    Article  Google Scholar 

  • Cardini A, Elton S (2008) Does the skull carry a phylogenetic signal? Evolution and modularity in the guenons. Biol J Linn Soc 93:813–834

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Charlesworth MJ (1956) Aristotle’s razor. Philos Stud 6:105–112

    Article  Google Scholar 

  • Collard M, Wood B (2000) How reliable are human phylogenetic hypotheses? Proc Natl Acad Sci USA 97:5003–5006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collard M, Wood B (2001) How reliable are current estimates of fossil catarrhine phylogeny? An assessment using extant great apes and old world monkeys. In: de Bonis L, Koufos G, Andrews P (eds) Phylogeny of the neogene hominoid primates of Eurasia. Cambridge University Press, Cambridge, pp 118–150

    Chapter  Google Scholar 

  • Collard M, Wood B (2007) Hominin homoiology: an assessment of the impact of phenotypic plasticity on phylogenetic analyses of humans and their fossil relatives. J Hum Evol 52:573–584

    Article  PubMed  Google Scholar 

  • Colless DH (1966) A note on Wilson’s consistency test for phylogenetic hypotheses. Syst Zool 15:358–359

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Darwin C (1872) On the origin of species, 6th edn. John Murray, London

    Google Scholar 

  • de Queiroz K, Poe S (2001) Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl R. Popper’s writings on corroboration. Syst Biol 50:305–321

    Article  PubMed  Google Scholar 

  • de Queiroz K, Poe S (2003) Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper’s degree of corroboration. Syst Biol 52:352–367

    PubMed  Google Scholar 

  • Edwards AWF (1972) Likelihood. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards AWF (1996) The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Syst Biol 45:79–91

    Article  Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL (1963) The reconstruction of evolution. Ann Hum Genet 27:105–106

    Google Scholar 

  • Engelmann GF, Wiley EO (1977) The place of ancestor-descendant relationships in phylogeny reconstruction. Syst Zool 26:1–11

    Article  Google Scholar 

  • Farris JS (1970) Methods of computing Wagner trees. Syst Zool 19:83–92

    Article  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Article  Google Scholar 

  • Farris JS (1973) A probability model for inferring evolutionary trees. Syst Zool 22:250–256

    Article  Google Scholar 

  • Farris JS (1979) The information content of the phylogenetic system. Syst Zool 28:483–519

    Article  Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York

    Google Scholar 

  • Farris JS (1989) The retention index and rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  • Farris JS, Kluge AG, Eckardt MJ (1970) A numerical approach to phylogenetic systematics. Syst Zool 19:172–191

    Article  Google Scholar 

  • Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbour-joining. Cladistics 12:99–124

    Article  Google Scholar 

  • Felsenstein J (1968) Statistical inference and the estimation of phylogenies. Ph.D. thesis, University of Chicago

    Google Scholar 

  • Felsenstein J (1973) Maximum likelihood and minimum steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249

    Article  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Ann Rev Ecol Syst 14:313–333

    Article  Google Scholar 

  • Felsenstein J (1985a) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1985b) Statistical inference and the estimation of phylogenies. Ph.D. dissertation, University of Chicago, Chicago

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Phil Trans R Soc Lond Ser A 222:309–368

    Article  Google Scholar 

  • Fleagle JG, Gilbert CC, Baden AL (2010) Primate cranial diversity. Am J Phys Anthropol 142:565–578

    Article  PubMed  Google Scholar 

  • Gatlin L (1975) Information theory and the living system. Columbia University Press, New York

    Google Scholar 

  • Gilbert CC (2011) Phylogenetic analysis of the African papionin basicranium using 3-D geometric morphometrics: the need for improved methods to account for allometric effects. Am J Phys Anthropol 144:60–71

    Article  PubMed  Google Scholar 

  • Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol 17:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Goldman N (1990) Maximum likelihood inference of phylogenetic trees, with special reference to a poisson process model of DNA substitution and to parsimony analysis. Syst Zool 39:345–361

    Article  Google Scholar 

  • Goloboff PA (2003) Parsimony, likelihood and simplicity. Cladistics 19:91–103

    Article  Google Scholar 

  • Gómez Robles A, Polly PD (2012) Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. Evolution 66:1024–1043

    Article  PubMed  Google Scholar 

  • Goswami A (2006) Morphological integration in the carnivoran skull. Evolution 60:169–183

    Article  PubMed  Google Scholar 

  • Goswami A, Polly PD (2010) The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE 5:e9517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Green RE, Krause J, Ptak S, Briggs A, Ronan M, Simons J, Du L, Egholm M, Rothberg J, Paunovic M, Pääbo S (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444:330–336

    Article  CAS  PubMed  Google Scholar 

  • Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  PubMed  Google Scholar 

  • Grehan JR, Schwartz JH (2009) Evolution of the second orangutan: phylogeny and biogeography of hominid origins. J Biogeogr 36:1823–1844

    Article  Google Scholar 

  • Groves C (1978) Phylogenetic and population systematics of the mangabeys (Primates: Cercopithecoidea). Primates 19:1–34

    Article  Google Scholar 

  • Harper CW Jr (1979) A Bayesian probability view of phylogenetic systematics. Syst Zool 28:547–553

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Hawks J (2004) How much can cladistics tell us about early hominid relationships? Am J Phys Anthropol 125:207–219

    Article  PubMed  Google Scholar 

  • Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59:277–290

    Article  Google Scholar 

  • Hennig W (1950) Grundzüge einer theorie der phylogenetischen systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. Illinois University Press, Urbana

    Google Scholar 

  • Hillis DM, Bull JJ, White ME, Badgett MR, Molineaux IJ (1992) Experimental phylogenetics: generation of a known phylogen. Science 255:589–592

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ, White ME, Badgett MR, Molineaux IJ (1993) Experimental approaches to phylogenetic analysis. Syst Biol 42:90–92

    Article  Google Scholar 

  • Hillis DM, Huelsenbeck JP, Swofford DL (1994) Hobgloblin of phylogenetics? Science 369:363–364

    CAS  Google Scholar 

  • Huelsenbeck JP (1997) Is the Felsenstein zone a fly trap? Syst Biol 46:69–74

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Crandall KA (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Ann Rev Ecol Syst 28:437–466

    Article  Google Scholar 

  • Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264

    Article  Google Scholar 

  • Huelsenbeck JP, Nielsen R (1999) Effect of nonindependent substitution on phylogenetic accuracy. Syst Biol 48:317–328

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997a) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997b) Maximum likelihood of phylogenies using stratigraphic data. Paleobiology 23:174–180

    Google Scholar 

  • Huelsenbeck JP, Ronquist B, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference in phylogeny. Syst Biol 51:673–688

    Article  PubMed  Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics I. Phys Rev 106:620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics II. Phys Rev 108:171

    Article  Google Scholar 

  • Kelchner SA, Thomas MA (2007) Model use in phylogenetics: nine key questions. Trends Ecol Evol 22:87–94

    Article  PubMed  Google Scholar 

  • Kimbel W, Lockwood C, Ward C, Leakey M, Rak Y, Johanson D (2006) Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. J Hum Evol 51:134–152

    Article  PubMed  Google Scholar 

  • Kluge AG (1990) Species as historical individuals. Biol Philos 5:417–431

    Article  Google Scholar 

  • Kluge AG (1991) Boine snake phylogeny and research cycles. Misc Publ Mus Zool Univ Mich 178:1–58

    Google Scholar 

  • Kluge AG (1997) Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13:81–96

    Article  Google Scholar 

  • Kluge AG (1999) The science of phylogenetic systematics: explanation, prediction, and test. Cladistics 15:429–436

    Article  Google Scholar 

  • Kluge AG (2001) Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Cladistics 17:395–399

    Article  Google Scholar 

  • Kluge AG (2003) On the deduction of species relationships: a précis. Cladistics 19:233–239

    Article  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature: 1–4

    Google Scholar 

  • Kullbach S (1951) Information theory and statistics. Wiley, New York

    Google Scholar 

  • Lehtonen S, Sääksjärvi IE, Ruokolainen K, Tuomisto H (2010) Who is the closest extant cousin of humans? Total-evidence approach to hominid phylogenetics via simultaneous optimization. J Biogeogr 38:805–808

    Article  Google Scholar 

  • Lehtonen S, Tuomisto H, Sääksjärvi IE, Ruokolainen K (2012) On cladistics and human–ape relationships. J Biogeogr 39:1743–1748

    Article  Google Scholar 

  • Lewis GN (1930) The principle of identity and the exclusion of quantum states. Phys Rev 36:1144–1153

    Article  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Li S (1996) Phylogenetic tree construction using Markov Chain Monte Carlo. Ph.D. dissertation, Ohio State University, Columbus

    Google Scholar 

  • Lieberman D (1999) Homology and hominid phylogeny: problems and potential solutions. Evol Anthropol 7:142–151

    Article  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    CAS  PubMed  Google Scholar 

  • Lundberg JG (1972) Wagner networks and ancestors. Syst Zool 18:1–32

    Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103

    Article  Google Scholar 

  • Mau B (1996) Bayesian phylogenetic inference via Markov chain Monte Carlo Methods. Ph.D. dissertation, University of Wisconsin, Madison (abstract)

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prufer K et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell PC (1901) On the intestinal tract of birds. Trans Linn Soc Lond Zool 8:173–275

    Article  Google Scholar 

  • Mitchell PC (1905) On the intestinal tract of mammals. Trans Zool Soc Lond 17:437–536

    Article  Google Scholar 

  • Mitchell A, Mitter C, Regier JC (2000) More taxa or more characters revisited: combining data from nuclear protein coding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst Biol 49:202–224

    Article  CAS  PubMed  Google Scholar 

  • Neyman J (1974) Molecular studies: a source of novel statistical problems. In: Gupta SS, Yackel J (eds) Statistical decision theory and related topics. Academic, New York, pp 1–27

    Google Scholar 

  • Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • O’Leary MA, Gatesy J (2008) Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics 24:397–442

    Article  Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53:673–684

    Article  PubMed  Google Scholar 

  • Penny D, Hendy MD, Steel MA (1992) Progress with methods for constructing evolutionary trees. Trends Ecol Evol 7:73–79

    Article  CAS  PubMed  Google Scholar 

  • Popper KR (1968) The logic of scientific discovery. Harper and Row, New York

    Google Scholar 

  • Popper KR (1997) The demarcation between science and metaphysics. In: Schilpp PA (ed) The philosophy of Rudolph Carnap. Open Court, La Salle, pp 183–226

    Google Scholar 

  • Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401

    Article  Google Scholar 

  • Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U et al (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AM-S, Ko Y-C, Jinam TA et al (2011) Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet 89:516–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rindal E, Brower AVZ (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334

    Article  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:796–804

    Article  CAS  Google Scholar 

  • Ronquist F (2004) Bayesian inference of character evolution. Trends Ecol Evol 19:475–481

    Article  PubMed  Google Scholar 

  • Rose KD, Chester SGB, Dunn RH, Boyer DM, Bloch JI (2011) New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the Paleocene–Eocene thermal maximum. Am J Phys Anthropol 146:281–305

    Article  PubMed  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Siddall ME, Kluge AG (1997) Probabilism and phylogenetic inference. Cladistics 13:313–336

    Article  Google Scholar 

  • Slice DE (2005) Modern morphometrics in physical anthropology. Springer, New York

    Book  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Ann Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San Francisco

    Google Scholar 

  • Sober E (1988) Reconstructing the past. Parsimony, evolution, and inference. MIT Press, Cambridge

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) Numerical taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol 17:839–850

    Article  CAS  PubMed  Google Scholar 

  • Steel MA, Hendy MD, Penny D (1993) Parsimony can be consistent! Syst Biol 42:581–587

    Article  Google Scholar 

  • Strait DS (2013) Human systematics. In: Begun DR (ed) A companion to paleoanthropology. Wiley, Chichester, pp 37–54

    Google Scholar 

  • Strait D, Grine F (2004) Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J Hum Evol 47:399–452

    Article  PubMed  Google Scholar 

  • Strait DS, Grine FE, Moniz MA (1997) A reappraisal of early hominid phylogeny. J Hum Evol 23:17–82

    Article  Google Scholar 

  • Strasser E, Delson E (1987) Cladistic analysis of cercopithecoid relationships. J Hum Evol 16:81–99

    Article  Google Scholar 

  • Swofford DL (1998) Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87:199–229

    Article  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Tribus M, McIrvine MC (1971) Energy and information. Sci Am 225:179–188

    Article  Google Scholar 

  • von Cramon-Taubadel N (2009) Revisiting the homoiology hypothesis: the impact of phenotypic plasticity on the reconstruction of human population history from craniometric data. J Hum Evol 57:179–190

    Article  Google Scholar 

  • von Cramon-Taubadel N, Smith HF (2012) The relative congruence of cranial and genetic estimates of hominoid taxon relationships: implications for the reconstruction of hominin phylogeny. J Hum Evol 62:640–653

    Article  Google Scholar 

  • Wagner WH Jr (1952) The fern genus Diellia: structure, affinities, and taxonomy. Univ Calif Publ Bot 26:1–212

    Google Scholar 

  • Wagner WH Jr (1961) Problems in the classification of ferns. In: Recent advances in botany. From lectures and symposia presented to the IX International Botanical Congress, Montreal, 1959. University of Toronto Press, Toronto, pp 841–844

    Google Scholar 

  • Wagner WH Jr (1969) The construction of a classification. In: Systematic biology. National Academy of Science USA, Publication 1692, pp 67–90

    Google Scholar 

  • Wagner WH Jr (1980) Origin and philosophy of the groundplan-divergence method of cladistics. Syst Bot 5:173–193

    Article  Google Scholar 

  • Wagner PJ (1998) A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24:430–449

    Google Scholar 

  • Watrous LE, Wheeler QD (1981) The outgroup comparison method of character analysis. Syst Zool 30:1–11

    Article  Google Scholar 

  • Wenzel JW, Carpenter JM (1994) Comparing methods: adaptive traits and tests of adaptation. In: Eggleton P, Vane-Wright RI (eds) Phylogenetics and ecology. Academic, London, pp 79–101

    Google Scholar 

  • Wenzel JW, Siddall ME (1999) Noise. Cladistics 15:51–64

    Article  Google Scholar 

  • Wiens JJ (2009) Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Syst Biol 58:87–99

    Article  PubMed  Google Scholar 

  • Wiens JJ, Kuczynski CA, Townsend T, Reeder TW, Mulcahy DG, Sites JW (2010) Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol 59:674–688

    Article  CAS  PubMed  Google Scholar 

  • Wiley EO (1975) Karl R. Popper, systematics, and classification: a reply to Walter Bock and other evolutionary taxonomists. Syst Zool 24:233–243

    Article  Google Scholar 

  • Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetic systematics. Wiley, New York

    Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: the theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Wiley EO, Siegel-Causey DJ, Brooks DR, Funk VA (1991) The compleat cladist: a primer of phylogenetic procedures. Mus Nat Hist Univ Kansas Spec Publ 19:1–158

    Google Scholar 

  • Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ, Delson E, Harcourt-Smith W, Rohlf FJ, St John K, Hamman B (2005) Evolutionary morphing. Proc IEEE Vis 2005:431–438

    Google Scholar 

  • Wilson EO (1965) A consistency test for phylogenies based on contemporaneous species. Syst Zool 14:214–220

    Article  Google Scholar 

  • Wilson EO (1967) The validity of the “consistency test” for phylogenetic hypotheses. Syst Zool 16:104

    Article  Google Scholar 

  • Yang Z (1994) Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. Syst Biol 43:329–342

    Article  Google Scholar 

  • Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaila E. Folinsbee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Folinsbee, K.E., Evans, D.C., Fröbisch, J., Brooks, D.R., Tsuji, L.A. (2015). Quantitative Approaches to Phylogenetics. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39979-4_5

Download citation

Publish with us

Policies and ethics