Skip to main content

Macrolide Antibiotics

  • Chapter
  • First Online:
Antimicrobials

Abstract

Macrolide antibiotics are an important class that are used to treat respiratory tract, skin and skin-structure, sexually transmitted, and various other infections. They exert their antimicrobial activity by inhibiting ribosomal protein biosynthesis. Resistance to antibiotics arises when antibiotic binding at its target site is disrupted, efflux pumps remove antibiotic from cells, or antibiotic is converted to an inactive metabolite. Following the isolation of erythromycin and many other macrolides from fermentation broths of soil microbes, three generations of semi-synthetic 14-, 15-, and 16-membered derivatives have been prepared and tested. Two second generation derivatives, clarithromycin and azithromycin, are the more utilized macrolides at this time. Ketolides are third generation derivatives of erythromycin that possess activity against many macrolide-resistant bacteria. Use of the first approved ketolide, telithromycin, has been restricted due to side effects, but some other ketolides have entered into development studies and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advanced Life Sciences (2012) http://www.advancedlifesciences.com/phoenix.zhtml?c=190126&p=irol=news&nyo=0

  • Ali AB, Goldstein FW, Acar JF (2002) In vitro activity of macrolides against traditional susceptible bacteria. In: Schönfeld W, Kirst HA (eds) Macrolide antibiotics. Birkhäuser, Basel

    Google Scholar 

  • Allen NE (1977) Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob Agents Chemother 11:669–674

    Article  PubMed  CAS  Google Scholar 

  • Allen NE (1995) Biochemical mechanisms of resistance to non-cell wall antibacterial agents. Prog Med Chem 32:157–238

    Article  PubMed  CAS  Google Scholar 

  • Allen NE (2002) Effects of macrolide antibiotics on ribosome function. In: Schönfeld W, Kirst HA (eds) Macrolide antibiotics. Birkhäuser, Basel

    Google Scholar 

  • Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics. Respiration 81:67–87

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Elcoro S, Yao JDC (2002) Antimicrobial macrolides in clinical practice. In: ÅŒmura S (ed) Macrolide antibiotics: chemistry, biology, and practice, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Baltz RH (2006) Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotech 24:1533–1540

    Article  CAS  Google Scholar 

  • Bertrand D, Bertrand S, Neveu E, Fernandes P (2010) Molecular characterization of off-target activities of telithromycin: a potential role for nicotinic acetylcholine receptors. Antimicrob Agents Chemother 54:5399–5402

    Article  PubMed  CAS  Google Scholar 

  • Blanchard SC, Cooperman BS, Wilson DN (2010) Probing translation with small-molecule inhibitors. Chem Biol 17:633–645

    Article  PubMed  CAS  Google Scholar 

  • Blondeau JM, DeCarolis E, Metzler KL, Hansen GT (2002) The macrolides. Expert Opin Investig Drugs 11:189–215

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA (2010) Ribosomal tunnel and translation regulation. Biochem (Moscow) 75:1501–1516

    Article  CAS  Google Scholar 

  • Bonnefoy A, Girard AM, Agouridas C, Chantot JF (1997) Ketolides lack inducibility properties of MLSB resistance phenotype. J Antimicrob Chemother 40:85–90

    Article  PubMed  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Inf Dis 48:1–12

    Article  Google Scholar 

  • Bryskier A, Denis A (2002) Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within gram-positive cocci. In: Schönfeld W, Kirst HA (eds) Macrolide antibiotics. Birkhäuser, Basel

    Google Scholar 

  • Buret AG (2010) Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin. Can J Vet Res 74:1–10

    PubMed  CAS  Google Scholar 

  • Bush K, Pucci MJ (2011) New antimicrobial agents on the horizon. Biochem Pharmacol 82:1528–1539

    Article  PubMed  CAS  Google Scholar 

  • Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline. J Antibiot 64:413–425

    Article  PubMed  CAS  Google Scholar 

  • Buyck J, Tulkens PM, Van Bambeke F (2011) Increased susceptibility of Pseudomonas aeruginosa to macrolides in biologically-relevant media by modulation of outer membrane permeability and of efflux pump expression. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, 17–20 Sep, IL; E-122

    Google Scholar 

  • Cempra Pharmaceuticals (2012) http://www.cempra.com

  • Cane DE (2010) Programming of erythromycin biosynthesis by a modular polyketide synthase. J Biol Chem 285:27517–27523

    Article  PubMed  CAS  Google Scholar 

  • Champney WS (2006) The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. Infect Disorders-Drug Targets 6:377–390

    Article  CAS  Google Scholar 

  • Corcoran JW (1964) The biosynthesis of erythromycin. Lloydia 27:1–14

    CAS  Google Scholar 

  • Corcoran JW (1981) Biochemical mechanisms in the biosynthesis of the erythromycins. In: Corcoran JW (ed) Antibiotics, vol 4: Biosynthesis. Springer, Berlin

    Google Scholar 

  • Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176–178

    Article  PubMed  CAS  Google Scholar 

  • Creemer LC, Toth JE, Kirst HA (2002) Synthesis and in vitro antimicrobial activity of 3-keto 16-membered macrolides derived from tylosin. J Antibiot 55:427–436

    Article  PubMed  CAS  Google Scholar 

  • Crosbie PA, Woodhead MA (2009) Long-term macrolide therapy in chronic inflammatory airway diseases. Eur Respir J 33:171–181

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Ma S (2011) Recent advances in the field of 16-membered macrolide antibiotics. Mini-Rev Med Chem 11:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Dang V, Nanda N, Cooper TW, Greenfield RA, Bronze MS (2007) Macrolides, azalides, ketolides, lincoamides, and streptogramins. J Okla State Med Assoc 100:75–81

    PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821–842

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite S, Vester B (2000) Macrolide resistance conferred by alterations in the ribosome target site. In: Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB, Noller HF (eds) The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, DC

    Google Scholar 

  • Dunkle JA, Xiong L, Mankin AS, Cate JHD (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci U S A 107:17152–17157

    Article  PubMed  CAS  Google Scholar 

  • Elanco Animal Health (2012) http://www.elanco.com.au/product_range/index.html

  • Enanta Pharmaceuticals (2012) http://www.enanta.com

  • Fernandes P, Pereira D, Jamieson B, Keedy K (2011) Solithromycin. Drugs Future 36:751–758

    CAS  Google Scholar 

  • Forbes AB, Ramage C, Sales J, Baggott D, Donachie W (2011) Determination of the duration of antibacterial efficacy following administration of gamithromycin using a bovine Mannheimia haemolytica challenge model. Antimicrob Agents Chemother 55:831–835

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AL, Albert RK (2010) Chronic macrolide therapy in inflammatory airways diseases. Chest 138:1202–1212

    Article  PubMed  CAS  Google Scholar 

  • Furuie H, Saisho Y, Yoshikawa T, Shimada J (2010) Intrapulmonary pharmacokinetics of S-013420, a novel bicyclolide antibacterial, in healthy Japanese subjects. Antimicrob Agents Chemother 54:866–870

    Article  PubMed  CAS  Google Scholar 

  • Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB, Noller HF (eds) (2000) The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, DC

    Google Scholar 

  • Haight TH, Finland M (1952) Laboratory and clinical studies on erythromycin. N Eng J Med 247:227–232

    Article  CAS  Google Scholar 

  • Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9:675–676

    Article  PubMed  CAS  Google Scholar 

  • Hammerschlag MR, Sharma R (2008) Use of cethromycin, a new ketolide, for treatment of community-acquired respiratory infections. Expert Opin Investig Drugs 17:387–400

    Article  PubMed  CAS  Google Scholar 

  • Harvey RJ, Wallwork BD, Lund VJ (2009) Anti-inflammatory effects of macrolides: applications in chronic rhinosinusitis. Immunol Allergy Clin N Am 29:689–703

    Article  Google Scholar 

  • Heilman FR, Herrell WE, Wellman WE, Geraci JE (1952) Some laboratory and clinical observations on a new antibiotic, erythromycin (ilotycin). Proc Staff Meet Mayo Clin 27:285–304

    PubMed  CAS  Google Scholar 

  • Heller S, Kellenberger L, Shapiro S (2007) Antipropionibacterial activity of BAL19403, a novel macrolide antibiotic. Antimicrob Agents Chemother 51:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Hermann T (2005) Drugs targeting the ribosome. Curr Opin Struct Biol 15:355–366

    Article  PubMed  CAS  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716

    Article  CAS  Google Scholar 

  • Hwang C-K, Duffield J, Chiu Y-H, Liang C-H, Yao S, Roberets N, Babakhani F, Sears P, Shue Y-K, Ichikawa Y, Fernandes P, Pereira D, Romero A (2008) SAR of 11,12-carbamate macrolides/ketolides linked with 1,4-substituted-[1,2,3]-triazoles. 48th Interscience conference on antimicrobial agents and chemotherapy, Washington, 25–28 Oct, DC; F1-3973

    Google Scholar 

  • Jiang L, Wang M, Or YS (2009) Pharmacokinetics of EDP-420 after ascending single oral doses in healthy adult volunteers. Antimicrob Agents Chemother 53:1786–1792

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Dougherty TJ, Magee TV (2007) Macrolide antibiotics. In: Triggle DJ, Taylor JB (eds) Comprehensive medicinal chemistry II, vol 7. Elsevier, Oxford

    Google Scholar 

  • Kannan K, Mankin AS (2011) Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci 1241:33–47

    Article  PubMed  CAS  Google Scholar 

  • Keyes RF, Carter JJ, Englund EE, Daly MM, Stone GG, Nilius AM, Ma Z (2003) Synthesis and antibacterial activity of 6-O-arylbutynyl ketolides with improved activity against some key erythromycin-resistant pathogens. J Med Chem 46: 1795–1798

    Google Scholar 

  • Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74:6416–6420

    Article  PubMed  CAS  Google Scholar 

  • Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA (2005) Macrolide antibiotics. In: Seidel A (ed) Kirk-Othmer encyclopedia of chemical technology, 5th edn. Wiley, New York

    Google Scholar 

  • Kirst HA (2010) New macrolide, lincosaminide and streptogramin B antibiotics. Expert Opin Ther Patents 20:1343–1357

    Article  CAS  Google Scholar 

  • Kovaleva A, Remmelts HH, Rijkers GT, Hoepelman AI, Biesma DH, Oosterheert JJ (2012) Immunomodulatory effects of macrolides during community-acquired pneumonia: a literature review. J Antimicrob Chemother 67:530–540

    Article  PubMed  CAS  Google Scholar 

  • Kurath P, Jones PH, Egan RS, Perun TJ (1971) Acid degradation of erythromycin A and erythromycin B. Experientia 27:362

    Article  PubMed  CAS  Google Scholar 

  • Kwan DH, Schulz F (2011) The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases. Molecules 16:6092–6115

    Article  PubMed  CAS  Google Scholar 

  • Lange RP, Locher HH, Wyss PC, Then RL (2007) The targets of currently used antibacterial agents: lessons for drug discovery. Curr Pharm Design 13:3140–3154

    Article  CAS  Google Scholar 

  • Leclercq R, Courvalin P (1991a) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35:1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Leclercq R, Courvalin P (1991b) Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother 35:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P, Cate JHD, Mankin AS (2010) Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 54:4961–4970

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Ma S (2011) Significant breakthroughs in search for anti-infectious agents derived from erythromycin A. Curr Med Chem 18:1993–2015

    Article  PubMed  CAS  Google Scholar 

  • Mankin AS (2008) Macrolide myths. Curr Opin Microbiol 11:414–421

    Article  PubMed  CAS  Google Scholar 

  • McCoy LS, Xie Y, Tor Y (2011) Antibiotics that target protein synthesis. WIREs RNA 2:209–232

    Article  PubMed  CAS  Google Scholar 

  • McDaniel R, Welch M, Hutchinson CR (2005) Genetic approaches to polyketide antibiotics. Chem Rev 105:543–558

    Article  PubMed  CAS  Google Scholar 

  • McGhee P, Clark C, Kosowska-Shick KM, Nagai K, Dewasse B, Beachel L, Appelbaum PC (2010) In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms. Antimicrob Agents Chemother 54:230–238

    Article  PubMed  CAS  Google Scholar 

  • McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  • Menge M, Rose M, Bohland C, Zschiesche E, Kilp S, Metz W, Allan M, Ropke R, Nurnberger M (2012) Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J Vet Pharmacol Ther 35:550–559

    Article  PubMed  CAS  Google Scholar 

  • Mitscher LA (2010) Tetracycline, aminoglycoside, macrolide, and miscellaneous antibiotics. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry, drug discovery, and development, 7th edn. Wiley, New York

    Google Scholar 

  • Mlynarczyk B, Mlynarczyk A, Kmera-Muszynska, Majewski S, Mlynarczyk G (2010) Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci. Mini-Rev Med Chem 10:928–937

    Google Scholar 

  • Montoya JG, Remington JS (2008) Management of Toxoplasma gondii infection during pregnancy. Clin Infect Dis 47:554–566

    Article  PubMed  Google Scholar 

  • Mulazimoglu L, Tulkens PM, Van Bambeke F (2005) Macrolides. In: Yu VL, Edwards G, McKinnon PS, Peloquin C, Morse GD (eds) Antimicrobial therapy and vaccines, vol 2. E-Sun Technologies, Pittsburgh

    Google Scholar 

  • Mutak S, Marsic N, Kramaric MD, Pavlovic D (2004) Semisynthetic macrolide antibacterials derived from tylosin. Synthesis and structure-activity relationships of novel desmycosin analogues. J Med Chem 47:411–431

    Article  PubMed  CAS  Google Scholar 

  • Omura S (2011) Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron 67:6420–6459

    Article  CAS  Google Scholar 

  • Omura S, Tanaka Y (1984) Biochemistry, regulation, and genetics of macrolide production. In: ÅŒmura S (ed) Macrolide antibiotics: chemistry, biology, and practice, 1st edn. Academic Press, Orlando

    Google Scholar 

  • Pereira D, Fernandes P (2011) Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg Med Chem Lett 21:510–513

    Article  PubMed  CAS  Google Scholar 

  • Periti P, Mazzei T, Mini E, Novelli A (1993) Adverse effects of macrolide antibacterials. Drug Saf 9:346–364

    Article  PubMed  CAS  Google Scholar 

  • Przybylski P (2010) Modifications and biological activity of natural and semisynthetic 16-membered macrolide antibiotics. Curr Med Chem 18:1993–2015

    Google Scholar 

  • Rafie S, MacDougall C, James CL (2010) Cethromycin: a promising new ketolide antibiotic for respiratory infections. Pharmacother 30:290–303

    Article  CAS  Google Scholar 

  • Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2011) Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Frontiers Microbiol 2:40

    Google Scholar 

  • Shiomi K, ÅŒmura S (2002) Discovery of new macrolides. In: ÅŒmura S (ed) Macrolide antibiotics: chemistry, biology, and practice, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Shryock TR, Richwine A (2010) The interface between veterinary and human antibiotic use. Ann N Y Acad Sci 1213:92–105

    Article  PubMed  Google Scholar 

  • Siibak T, Peil L, Xiong L, Mankin A, Remme J, Tenson T (2009) Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob Agents Chemother 53:563–571

    Article  PubMed  CAS  Google Scholar 

  • Sivapalasingam S, Steigbigel NH (2010) Macrolides, clindamycin, and ketolides. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 7th edn. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Sugawara A, Sueki A, Hirose T, Nagai K, Gouda H, Shima H, Akagawa KS, Omura S, Sunazuka T (2011) Novel 12-membered non-antibiotic macrolides from erythromycin A: EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett 21:3373–3376

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA (2005) Improving on nature: antibiotics that target the ribosome. Curr Opin Microbiol 8:534–542

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA (2011) Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci 1241:122–152

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA, Leclercq R (2002) Mechanisms of resistance to macrolides, lincosamides, and ketolides. In: Schönfeld W, Kirst HA (eds) Macrolide antibiotics. Birkhäuser, Basel

    Google Scholar 

  • Terui Y, Kinoshita K, Kaneda Y, Akashi T, Hamaguchi T, Kawashima A (2006) Synthesis of 2-methyl 16-membered macrolide derived from tylosin. J Antibiot 59:98–104

    Article  PubMed  CAS  Google Scholar 

  • Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270

    Article  PubMed  CAS  Google Scholar 

  • Van Bambeke F, Harms JM, Van Laethem Y, Tulkens PM (2008) Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin Pharmacother 9:267–283

    Article  PubMed  Google Scholar 

  • Van Lanen SG, Shen B (2008) Advances in polyketide synthase structure and function. Curr Opin Drug Discov Devel 11:186–195

    PubMed  Google Scholar 

  • Weisblum B (1995a) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577–585

    Article  PubMed  CAS  Google Scholar 

  • Weisblum B (1995b) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39:797–805

    Article  PubMed  CAS  Google Scholar 

  • Westh H (1996) Erythromycin-resistant Staphylococcus aureus in Denmark. APMIS Supplement 57:1–37

    CAS  Google Scholar 

  • Wilson DN (2004) Antibiotics and the inhibition of ribosome function. In: Nierhaus KH, Wilson DN (eds) Protein synthesis and ribosome function. Wiley-VCH, Weinheim

    Google Scholar 

  • Wilson DN (2011) On the specificity of antibiotics targeting the large ribosomal subunit. Ann N Y Acad Sci 1241:1–16

    Article  PubMed  CAS  Google Scholar 

  • Wimberly BT (2009) The use of ribosomal crystal structures in antibiotic drug design. Curr Opin Investig Drugs 10:750–765

    PubMed  CAS  Google Scholar 

  • Ying L, Tang D (2010) Recent advances in the medicinal chemistry of novel erythromycin-derivatized antibiotics. Curr Topics Med Chem 10:1441–1469

    Article  CAS  Google Scholar 

  • Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74:649–679

    Article  PubMed  CAS  Google Scholar 

  • Young LS, Bermudez LE (2002) Activity of macrolides against mycobacteria. In: Schönfeld W, Kirst HA (eds) Macrolide antibiotics. Birkhäuser, Basel

    Google Scholar 

  • Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K (2012) Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol 68:479–503

    Article  PubMed  CAS  Google Scholar 

  • Zhanel GG, Neuhauser MM (2005) Ketolides (telithromycin, cethromycin). In: Yu VL, Edwards G, McKinnon PS, Peloquin C, Morse GD (eds) Antimicrobial therapy and vaccines, vol 2. E-Sun Technologies, Pittsburgh

    Google Scholar 

  • Zhao L, Liu H-W (2010) Pathway and enzyme engineering and applications for glyco-diversification. In: Yeh W-K, Yang H-C, McCarthy JR (eds) Enzyme technologies: Metagenomics, evolution, biocatalysis, and biosynthesis. Wiley, Hoboken

    Google Scholar 

  • Zuckerman JM, Qamar F, Bono BR (2011) Review of macrolides (azithromycin, clarithromycin), ketolides (telithromycin) and glycylcyclines (tigecycline). Med Clin N Am 95:761–791

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert A. Kirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirst, H.A. (2014). Macrolide Antibiotics. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_11

Download citation

Publish with us

Policies and ethics