Skip to main content

Digitally-Based Calibration Techniques for RF \( \Upsigma \Updelta \) Modulators

  • Chapter
  • First Online:
Design, Modeling and Testing of Data Converters

Part of the book series: Signals and Communication Technology ((SCT))

  • 2694 Accesses

Abstract

A calibration technique for Noise Transfer Function (NTF) optimization of Continuous-Time Sigma Delta (CT \( \Upsigma \Updelta \)) modulators is presented. This technique employs a test tone applied at the input of the quantizer to evaluate the noise transfer function of the \( \Upsigma \Updelta \) modulator using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed-mode systems. Once the modulator’s output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal-to-Quantization Noise Ratio (SQNR) performance is extracted via an LMS software-based algorithm. This approach uses a simple test signature to measure both in-band and out-of-band loop behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schreier, R., Temes, G.: Understanding Delta-Sigma Data Converters. Wiley;IEE Press, Hobken, NJ (2005)

    Google Scholar 

  2. Cherry, J.A., Snelgrove, W.M.: Continuous time ΔΣ modulators for high speed A/D conversion—Theory, practice and fundamental performance limits, 1st edn. Kluwer Academic Publishers, Norwell, MA (2000)

    Google Scholar 

  3. van de Plassche, R.: Integrated Analog-to-Digital and Digital-to-Analog Converters. Kluwer Academic Publishers, Norwell, Massachusetts (2003)

    Book  MATH  Google Scholar 

  4. Norsworthy, S.R., Schreier, R., Temes, G.C.: Delta-Sigma Data Converters: Theory, Design, and Simulation. Wiley-IEEE Press, New York, NY (1996)

    Book  Google Scholar 

  5. Malla, P., et al.: A 28 mW spectrum-sensing reconfigurable 20 MHz 72 dB-SNR 70 dB-SNDR DT \( \Updelta \Upsigma \) ADC for 802.11n/WiMAX receivers. In: IEEE ISSCC Digest of Technical Papers, pp. 496–497. San Francisco, CA (2008)

    Google Scholar 

  6. Breems, L.J., et al.: A 56 mW CT quadrature cascaded \( \Upsigma \Updelta \) modulator with 77 dB DR in a near zero-IF 20 MHz band. In: IEEE ISSCC Digest of Technical Papers, pp. 238–239. San Francisco, CA (2007)

    Google Scholar 

  7. Mitteregger, G., et al.: A 20 mW 640 MHz CMOS continuous-time \( \Upsigma \Updelta \) ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB. IEEE J. Solid-State Circuits 41(12), 2641–2649 (2006)

    Google Scholar 

  8. Straayer, M.Z., Perrott, M.H.: A 12-bit, 10-MHz Bandwidth, Continuous-Time Σ∆ ADC with a 5-bit, 950-MS/s VCO-based Quantizer. IEEE J. Solid-State Circuits 43(4), 805–814 (2008)

    Article  Google Scholar 

  9. Yang, W., et.al.: A 100mW 10 MHz-BW CT ΔΣ modulator with 87 dB DR and 91dBc IMD, In: IEEE ISSCC Digest of Technical Papers, pp. 498–631 (2008)

    Google Scholar 

  10. Fogleman, E., Galton, I.: A dynamic element matching technique for reduced-distortion multibit quantization in delta-sigma ADCs. IEEE Trans. Circuits Syst. II 48(2), 158–170 (2001)

    Article  Google Scholar 

  11. Colodro, F., Torralba, A.: New continuous-time multibit sigma-delta modulators with low sensitivity to clock jitter. IEEE Trans. Circuits and Systems I 56(1), 74–83 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dhanasekaran, V., Gambhir, M., Elsayed, M., Sanchez-Sinencio, E., Silva-Martinez, J., Mishra, C., Chen, L., Pankratz, E.: A 20 MHz BW 68 dB DR CT ∆Σ ADC based on a multi-bit time-domain quantizer and feedback element. In: IEEE ISSCC Digest of Technical. Papers, pp. 174–175 (2009)

    Google Scholar 

  13. Lu, C.-Y., Onabajo, M., Gadde, V., Chen, H.-P., Lo, Y.C., Periasamy, V., Silva-Martinez, J.: A 25 MHz bandwidth 5th-order continuous-time lowpass sigma-delta modulator with 69 dB dynamic range using time-domain quantization and feedback. IEEE J. Solid-State Circuits 45, 1795–1808 (2010)

    Google Scholar 

  14. Løkken, I., Vinje, A., Hernes, B., Sæther, T.: Review and advances in delta-sigma DAC error estimation based on additive noise modeling. Analog Integr. Circ. Sig. Process. 62(2), 179–192 (2010)

    Google Scholar 

  15. De la Rosa, J.: Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey. IEEE Transactions on Circuits and Systems-I Regular Papers 58, 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  16. Gailus, P.H., Turney, W.J., Yester.Jr, F.R.: Method and arrangement for a sigma-delta converter for bandpass signals. US Patent 4857928, 15 Aug 1989

    Google Scholar 

  17. Engelen, van J.A.E.P, Plassche, van de R.J., Stikvoort, E., Venes, A.G.: A sixth-order continuous-time bandpass sigma-delta modulator for digital radio IF. IEEE J. Solid-State Circuits 34(12), 1573–1764 (1999)

    Google Scholar 

  18. Maurino, R., Mole, P.: A 200 MHz IF 11-bit fourth-order bandpass \( \Upsigma \Updelta \) ADC in SiGe. IEEE J. Solid-State Circuits 35, 959–2640 (2000)

    Google Scholar 

  19. Bernardinis, G., Borghetti, F., Ferragina, V., Fornasari, A., Gatti, U., Malcovati, P., Maloberti, F.: A wide-band 280-MHz four-path time-interleaved bandpass sigma-delta modulator. IEEE Trans. Circuits and Systems 53, 1423–1432 (2006)

    Article  Google Scholar 

  20. Schreier, R., Nazmy, A., Shibata, H., Paterson, D., Rose, S., Mehr, I., Lu, Q.: A 375-mW quadrature bandpass ΔΣ ADC with 8.5-MHz BW and 90-dB DR at 44 MHz. IEEE J. Solid-State Circuits 41, 2632–2640 (2006)

    Article  Google Scholar 

  21. Frank, H., Langmann, U.: Excess loop delay effects in continuous-time quadrature bandpass sigma-delta modulators. In: Proceedings of the IEEE international symposium on circuits and systems, vol. 1, pp 1029–1032 (2003)

    Google Scholar 

  22. Cherry, J.A., Snelgrove, W.M.: Excess loop delay in continuous-time delta-sigma modulators. IEEE Trans on Circuits and Systems - II 46, 376–389 (1999)

    Article  Google Scholar 

  23. Yasuda, A., Tanimoto, H., Iida, T.: A third-order Δ-Σ modulator using second-order noise-shaping dynamic element matching. IEEE J. Solid-State Circuits 33(12), 1879–1886 (1998)

    Article  Google Scholar 

  24. Aghdam, E.N., Benabes, P.: Higher order dynamic element matching by shortened tree-structure in delta-sigma modulators. In: Proceedings of the European conference on circuit theory and design, Sept 2005, pp. 201–204

    Google Scholar 

  25. Radke, R.E., Eshraghi, A., Fiez, T.S.: A 14-bit current-mode ΣΔ DAC based upon rotated data weighted averaging. IEEE J. Solid-State Circuits 35, 1074–1084 (2000)

    Article  Google Scholar 

  26. Huang, L.H., Lee, E.K.F.: A 1.2 V direct background digital tuned continuous-time bandpass sigma-delta modulator. In: Proceedings of the 27th European Solid-State Circuits Conference ESSCIRC, pp. 526–529 (2001)

    Google Scholar 

  27. Rutten, R., Breems, L.J., Wetzker, G.: Digital Calibration of a Continuous-Time Cascaded ΣΔ Modulator based on Variance Derivative Estimation. In: Proceedings of the IEEE European solid-state circuits conference, Sept 2006, pp. 199–202

    Google Scholar 

  28. Shim, J.H., Park, I.-C., Kim, B.: A hybrid delta-sigma modulator with adaptive calibration. Proceedings of IEEE-ISCAS, pp. 1025–1028 (2003)

    Google Scholar 

  29. Silva-Rivas, F., Lu, C.-Y., Kode, P., Thandri, B.K., Silva-Martinez, J.: Digital Based Calibration Technique for Continuous-Time Bandpass Sigma-Delta Analog-to-Digital Converters. Analog Integr. Circ. Sig. Process 59, 91–95 (2009)

    Article  Google Scholar 

  30. Lu, C.-Y., Silva-Rivas, F., Kode, P., Silva-Martinez, J., Hoyos, S.: A 6th-order 200 MHz IF Bandpass Sigma-Delta Modulator With over 68 dB SNDR in 10 MHz Bandwidth. IEEE J. Solid-State Circuits 45(6), 1122–1136 (2010)

    Article  Google Scholar 

  31. Silva-Martinez, J., Lu, C.-Y., Onabajo, M., Silva-Rivas, F., Hoyos, S.: Broadband high-resolution bandpass sigma-delta modulator with a software based calibration scheme. In: Iniewski, K. (ed.) Circuits for Emerging Technologies. CRC Press, Boca Raton (2011)

    Google Scholar 

  32. Thandri, B.K., Silva-Martinez, J.: A 63 dB 75 mW bandpass ΣΔ RF ADC at 950 MHz using 3.8 GHz clock in 0.25 μm SiGe BiCMOS technology. IEEE J. Solid-State Circuits 42, 269–279 (2007)

    Article  Google Scholar 

  33. Chavatzis, T., Gagnon, E., Repeta, M., Voinigescu, S.P.: A low noise 40 Gs/s continuous time bandpass ΣΔ ADC centered at 2 GHz for direct sampling receivers. IEEE J. Solid-State Circuits 42, 1065–1075 (2007)

    Article  Google Scholar 

  34. Ryckaert,J. et al.: A 2.4 GHz low-power sixth-order RF bandpass \( \Upsigma \Updelta \) converter in CMOS. IEEE J. Solid-State Circuits 44, 2873–2880 (2009)

    Google Scholar 

  35. Giannini, V., et al.: A 2 mm2 0.1–5 GHz Software-Defined Radio Receiver in 45 nm Digital CMOS. IEEE J. Solid-State Circuits 44, 3486–3498 (2009)

    Article  Google Scholar 

  36. Beilleau, N., Aboushady, H., Montaudon, F., Cathelin, A.: A 1.3 V 26 mW 3.2 Gs/s under sampled LC bandpass ADC for a SDR ISM band receiver in 130 nm CMOS. In: Proceedings of IEEE RFIC, pp. 383–386 (2009)

    Google Scholar 

  37. Silva-Martinez, J., Hoyos, S., Mincey, J., Lo, Y.-C., Lu, C.-Y., Silva-Rivas, F.: Digitally Assisted RF-to-Digital Bandpass Converters for Broadband Communication Systems, Short Course, IEEE 2011 RF-IC Workshop New Architectures for Digitized Receivers. Baltimore Maryland, June (2011)

    Google Scholar 

  38. Shibata, H., et. al.: A DC-to-1 GHz tunable RF ΔΣ ADC achieving DR = 74 dB and BW = 150 MHz at f0 = 450 MHz using 550 mW. In: IEEE ISSCC Digest of Technical Papers, pp. 150–151 (2012)

    Google Scholar 

  39. Thandri, B.K., Silva-Martinez, J.: A robust feedforward compensation scheme for multi-stage operational transconductance amplifiers with no miller capacitors. IEEE J. Solid-State Circuits 38, 237–243 (2003)

    Article  Google Scholar 

  40. Lewinski, A., Silva-Martinez, J.: OTA linearity enhancement technique for high frequency applications with IM3 below -65 dB. IEEE Trans. Circuits Syst. II. Analog Digit Signal Processing 51, 542–548 (2004)

    Article  Google Scholar 

  41. Mitola III, J., Maguire Jr, G.Q.: Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 6, 13–18 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The research on baseband modulators was partially sponsored by the Semiconductor Research Corporation under task number 1836.038. The research devoted to bandpass modulators was sponsored by NSF under Award Number 0824031. Authors would like to recognize the support of TSMC and Jazz Semiconductor for chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Silva-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva-Martinez, J., Silva-Rivas, F., Lu, CY., Mincey, J., Hoyos, S. (2014). Digitally-Based Calibration Techniques for RF \( \Upsigma \Updelta \) Modulators. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39655-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39655-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39654-0

  • Online ISBN: 978-3-642-39655-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics