Skip to main content

Dynamic Testing of Analog-to-Digital Converters by Means of the Sine-Fitting Algorithms

  • Chapter
  • First Online:
Design, Modeling and Testing of Data Converters

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The chapter is dedicated to dynamic testing of Analog-to-Digital Converters (ADCs) by means of both time- and frequency-domain sine-fitting algorithms (SFAs). At first the sine-fitting procedure used for the estimation of SIgnal-to-Noise And Distortion ratio (SINAD) and Effective Number Of Bits (ENOB) parameters is described. In the following the expressions for the bias and the standard deviation of the ENOB estimator provided by a SFA are derived. Then, the SFAs based on the Interpolated Discrete Fourier Transform (IpDFT) method, the Energy-Based (EB) method, and the well known three- and four-parameter SFAs are separately analyzed. For each algorithm, the basic theoretical background and the operational detail are given. Moreover, the accuracy of all the presented algorithms are compared by means of both theoretical and simulation results. Some aspects concerning the influence of the harmonics, time jitter, and time base distortions on the dynamic performance of an ADC are also discussed. Besides, some Multi-Harmonics Sine-Fitting Algorithms (MHSFAs) are briefly described. Finally, the accuracy of the ENOB estimates provided by the considered SFAs and MHSFAs are compared through real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE Std. 1241, Standard for Terminology and Test Methods for Analog-to-Digital Converters. IEEE, New York December (2000)

    Google Scholar 

  2. European Project DYNAD. Methods and Draft Standards for the Dynamic Characterization and Testing of Analog-to-Digital Converters

    Google Scholar 

  3. Belega, D., Dallet, D., Petri, D.: A high-accuracy procedure for effective number of bits estimation in analog-to-digital converters. IEEE Trans. Instrum. Meas. 60(5), 1522–1532 (2011)

    Article  Google Scholar 

  4. Belega, D., Petri, D., Dallet, D.: Sine-fitting by the energy-based method in the dynamic testing of ADCs. In: Proceedings of 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, vol. 1, pp. 33–38. Prague, Czech Republic 15–17 Sept 2011

    Google Scholar 

  5. Kollár, I.: Bias of mean value and mean square value measurements based on quantized data. IEEE Trans. Instrum. Meas. 43(5), 733–739 (1994)

    Article  Google Scholar 

  6. Widrow, B., Kollár, I., Liu, M.–C.: Statistical theory of quantization. IEEE Trans. Instrum. Meas. 45(2), 353–361 (1996)

    Google Scholar 

  7. Hejn, K., Morling, R.C.S.: A semifixed frequency method for evaluating the effective resolution of A/D converters. IEEE Trans. Instrum. Meas. 41(2), 212–217 (1992)

    Article  Google Scholar 

  8. Petri, D.: Frequency-domain testing of waveform digitizers. IEEE Trans. Instrum. Meas. 51(3), 445–453 (2002)

    Article  Google Scholar 

  9. Andersson, T., Händel, P.: IEEE standard 1057, Cramér-Rao bound and the parsimony principle. IEEE Trans. Instrum. Meas. 55(1), 44–53 (2006)

    Article  Google Scholar 

  10. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York (1989)

    Google Scholar 

  11. Rife, D.C., Vincent, G.A.: Use of the discrete Fourier transform in the measurement of frequencies and levels of tones. Bell Syst. Tech. J. 49, 197–228 (1970)

    Article  MathSciNet  Google Scholar 

  12. Offelli, C., Petri, D.: Interpolation techniques for real-time multifrequency waveforms analysis. IEEE Trans. Instrum. Meas. 39(1), 106–111 (1990)

    Google Scholar 

  13. Offelli, C., Petri, D.: The influence of windowing on the accuracy of multifrequency signal parameter estimation. IEEE Trans. Instrum. Meas. 41(2), 256–261 (1992)

    Article  Google Scholar 

  14. Belega, D., Dallet, D.: Multifrequency signal analysis by interpolated DFT method with maximum sidelobe decay windows. Measurement 42(3), 420–426 (2009)

    Article  Google Scholar 

  15. Belega, D., Dallet, D., Petri, D.: Statistical description of the sine-wave frequency estimator provided by the interpolated DFT method. Measurement 45(1), 109–117 (2012)

    Article  Google Scholar 

  16. Belega, D.: “The maximum sidelobe decay windows”, L’Académie Roumaine, Revue Roumaine des Sciences Techniques. Série Electrotechnique et Energétique 50(3), 349–356 (2005)

    Google Scholar 

  17. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  18. Belega, D., Dallet, D., Petri, D.: Accuracy of sine wave frequency estimation by multipoint interpolated DFT approach. IEEE Trans. Instrum. Meas. 59(11), 2808–2815 (2010)

    Article  Google Scholar 

  19. Offelli, C., Petri, D.: A frequency-domain procedure for accurate real-time signal parameter measurement. IEEE Trans. Instrum. Meas. 39(2), 363–368 (1990)

    Article  Google Scholar 

  20. Belega, D., Dallet, D., Petri, D.: Accuracy of the normalized frequency estimation of a discrete-time sine-wave by the energy-based method. IEEE Trans. Instrum. Meas. 61(1), 111–121 (2012)

    Article  Google Scholar 

  21. Nuttall, A.H.: Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process. ASSP-29(1), 84–91 (1981)

    Google Scholar 

  22. Händel, P.: Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm. IEEE Trans. Instrum. Meas. 49(6), 1189–1193 (2000)

    Article  Google Scholar 

  23. Belega, D., Dallet, D.: Dynamic testing of A/D converters by means of the three-parameter sine-fit algorithm. Measurement 40(1), 1–7 (2007)

    Article  Google Scholar 

  24. Bilau, T.Z., Megyeri, T., Sárhegyi, A., Márkus, J., Kollár, I.: Four-parameter fitting of sine-wave testing result: iteration and convergence. Comput. Stand. Interfaces 26(1), 51–56 (2004)

    Article  Google Scholar 

  25. Jain, V.K., Collins, W.L., Davis, D.C.: High-accuracy analog measurements via interpolated FFT. IEEE Trans. Instrum. Meas. IM-28(2), 113–122 (1979)

    Google Scholar 

  26. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, vol. 1. Prentice-Hall, Upper Saddle River, New Jersey (1993)

    Google Scholar 

  27. Novotný, M., Slepička, D., Sedláček, M.: Uncertainty analysis of the RMS value and phase in frequency domain by noncoherent sampling. IEEE Trans. Instrum. Meas. 56(3), 983–989 (2007)

    Article  Google Scholar 

  28. Deyst, J.P., Souders, T.M., Solomon, O.M.: Bouds on least-squares four-parameter sine-fit errors due to the harmonic distortion and noise. IEEE Trans. Instrum. Meas. 44(3), 637–642 (1995)

    Article  Google Scholar 

  29. Pintelon, R., Schoukens, J.: An improved sine-wave fitting procedure for characterizing data acquisition channels. IEEE Trans. Instrum. Meas. 45(2), 588–593 (1996)

    Article  MathSciNet  Google Scholar 

  30. Ramos, P.M., da Silva, M.F., Martins, R.C., Cruz Serra, A.M.: Simulation and experimental results of multiharmonic least-squares fitting algorithms applied to periodic signals. IEEE Trans. Instrum. Meas. 55(2), 646–651 (2006)

    Article  Google Scholar 

  31. Ramos, P.M., Cruz Serra, A.: Least squares multiharmonic fitting: convergence improvements. IEEE Trans. Instrum. Meas. 56(4), 1412–1418 (2007)

    Article  Google Scholar 

  32. Dallet, D., Petri, D., Belega, D.: ADCs dynamic testing by multiharmonic sine fitting algorithms. In: Proceedings of the International Workshop on ADC Modelling, Testing and Data Converter Analysis and Design and IEEE 2011 ADC Forum, Orvieto, Italy, June 30 to July 1, 2011

    Google Scholar 

  33. IEEE Standard for Digitizing Waveform Recorders, IEEE Std. 1057–2007, 2007

    Google Scholar 

  34. Shinagawa, M., Akazawa, Y., Wakimoto, T.: Jitter analysis of high-speed sampling systems. IEEE J. Solid-State Circuits 25(1), 220–224 (1990)

    Article  Google Scholar 

  35. Sounders, T.M., Flach, D.R., Hagwood, C., Yang, G.L.: The effects of jitter in sampling systems. IEEE Trans. Instrum. Meas. 39(1), 80–85 (1990)

    Article  Google Scholar 

  36. Verbeyst, F., Roland, Y., Schoukens, J., Pintelon, R.: System indentification approach applied to jitter estimation. In: Proceedings of the IEEE Conference Instrumentation and Measurement Technology Conference, pp. 1752–1757, Sorrento, Italy, Apr 24–27 2006

    Google Scholar 

  37. Jenq, Y.C.: Digital spectra of nonuniformly sampled signals: A robust sampling time offset estimation for ultra high-speed waveform digitizers using interleaving. IEEE Trans. Instrum. Meas. 39(1), 71–75 (1990)

    Article  Google Scholar 

  38. Shariat-Panahi, S., Alegria, F.A.C., Mànuel, A., Serra, A.M.C.: IEEE 1057 jitter test of waveform recorders. IEEE Trans. Instrum. Meas. 58(7), 2234–2244 (2009)

    Article  Google Scholar 

  39. Chiorboli, G., Fontanili, M., Morandi, C.: A new method for estimating the aperture uncertainty of A/D converters. IEEE Trans. Instrum. Meas. 47(1), 61–64 (1998)

    Article  Google Scholar 

  40. Janik, J.-M., Bloyet, D., Guyot, B.: Measurement of timing jitter contributions in a dynamic test setup for A/D converters. IEEE Trans. Instrum. Meas. 50(3), 786–791 (2001)

    Article  Google Scholar 

  41. Schoukens, J., Pintelon, R., Vandersteen, G.: A sinewave fitting proceure for characterizing data acquisition channels in the presence of time base distortion and time jitter. IEEE Trans. Instrum. Meas. 46(4), 1005–1011 (1997)

    Article  Google Scholar 

  42. Verspecht, J.: Accurate spectral estimation based on measurements with a distorted-time based digitizer. IEEE Trans. Instrum. Meas. 43(2), 210–215 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Belega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petri, D., Belega, D., Dallet, D. (2014). Dynamic Testing of Analog-to-Digital Converters by Means of the Sine-Fitting Algorithms. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39655-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39655-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39654-0

  • Online ISBN: 978-3-642-39655-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics