Skip to main content

Roto-torsional Levels for Symmetric and Asymmetric Systems: Application to HOOH and HOOD Systems

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Abstract

Two pictures of separation of torsional mode in intramolecular dynamics are given for the treatment of hindered rotations of molecular systems like ABCD, which present a large amplitude motion associated with the torsional mode. The energy profile (torsional potential) is described by a dihedral angle and the chosen coordinates are based on orthogonal local vectors. Our model consists of two linear rigid rotors AB and CD that rotate around the Jacobi vector connecting the centers of mass of the diatoms AB and CD. We have used two procedures to calculate the roto-torsional energy levels. The first, referred to bi-rotor, uses the Hamiltonian as function of the azimuth angles of the AB and CD rotors. In the second one, referred to roto-torsion, we separate the internal rotation (torsional mode) from the overall rotation around the Jacobi vector. For the cases where the two moments of inertia are equal, e.g. HOOH, conservation of both energy and angular momentum for a system viewed as involving either torsion plus external rotation or interaction of two rotors requires correlation of levels with symmetries τ = 1 and 4 with zero or even values of the external rotation angular momentum quantum number k in units of \(\hbar\). Conversely, torsional energy levels that belong to the τ = 2 and 3 symmetries, correlate with odd values of k. In HOOD the two rotors have different moments of inertia, and this causes further level splitting for τ = 2 and 3 only. Here we apply the two procedures to understanding the roto-torsional levels for HOOH and HOOD molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aquilanti, V., Maciel, G.S.: Orig. Life Evol. Biosph. 36, 435 (2006)

    Google Scholar 

  2. Bitencourt, A.C.P., Ragni, M., Maciel, G.S., Aquilanti, V., Prudente, F.V.: J. Chem. Phys. 129, 154316 (2008)

    Google Scholar 

  3. Chen, R., Ma, G., Guoa, H.: Chem. Phys. Lett. 320, 567–574 (2000)

    Google Scholar 

  4. Chen, R., Ma, G., Guoa, H.: J. Chem. Phys. 114, 4763–4774 (2001)

    Google Scholar 

  5. Fehrensen, B., Luckhaus, D., Quack, M.: Chem. Phys. Litt. 300, 312–320 (1999)

    Google Scholar 

  6. Hunt, R.H., Leacock, R.A., Peters, C.W., Hecht, K.T.: J. Chem. Phys. 42, 1931–1946 (1965)

    Google Scholar 

  7. Koehler, J.S., Dennison, D.M.: Phys. Rev. 57, 1006–1021 (1940)

    Google Scholar 

  8. Koput, J., Carter, S., Handy, N.C.: J. Chem. Phys. 115, 8345–8350 (2001)

    Google Scholar 

  9. Lin, S.Y., Guo, H.: J. Chem. Phys. 119, 5867–5873 (2003)

    Google Scholar 

  10. Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Chem. Phys. Lett. 432, 383–390 (2006)

    Google Scholar 

  11. Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Int. J. Quant. Chem. 107, 2697–2707 (2007)

    Google Scholar 

  12. Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: J. Phys. Chem. A 111, 12604–12610 (2007)

    Google Scholar 

  13. Pelz, G., Yamada, K.M.T., Winnewisser, G.: J. Mol. Spectrosc. 159, 507 (1993)

    Google Scholar 

  14. Ragni, M., Bitencourt, A.C.P., Aquilanti, V.: Int. J. Quant. Chem. 107, 2870–2888 (2007)

    Google Scholar 

  15. Roncaratti, L.F., Aquilanti, V.: Int. J. Quant. Chem. 110, 716 (2010)

    Google Scholar 

  16. Ross, S.C., Yamada, K.M.T.: Phys. Chem. Chem. Phys. 9, 5809–5813 (2007)

    Google Scholar 

  17. Senent, M.L., Fernández-Herrera, S., Smeyers, Y.G.: Spectrochimica Acta Part A 56, 1457–1468 (2000)

    Google Scholar 

  18. Winnewisser, G., Yamada, K.M.T.: Vib. Spectrosc. 1, 263 (1991)

    Google Scholar 

  19. Yamada, K.M.T., Winnewisser, G., Jensen, P.: J. Mol. Struct. 695, 323–337 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bitencourt, A.C.P., Prudente, F.V., Ragni, M. (2013). Roto-torsional Levels for Symmetric and Asymmetric Systems: Application to HOOH and HOOD Systems. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics