Skip to main content

Signaling Pathways in Rare Lymphomas

  • Chapter
  • First Online:
Rare Lymphomas

Abstract

Here we give an overview of select signaling pathways understood or thought to play a key role in the pathogenesis of lymphomas, covering examples of both B-cell and T-cell lymphomas. The selection focuses on providing well-understood examples and may serve as a guideline also for entities not covered in these sections. Remarkably many of these cancers are characterized by genetic alterations that lead to activation of the NF-κB and JAK/STAT pathways. A striking example is seen in MALT lymphoma where recurrent chromosomal translocations targeting different regulatory nodes lead to NF-κB activation. We discuss these mechanisms as well as more disease-specific alterations such as oncogenic activation of MYC in Burkitt’s lymphoma, of TAX in adult T-cell leukemia/lymphoma, of ALK in peripheral T-cell lymphoma, and the MyD88 L265P mutation in Waldenström’s macroglobulinemia. DNA damage pathways are equally of importance and discussed in the context of with mantle cell lymphoma and Burkitt’s lymphoma. A striking example of how dysregulation of immune surveillance pathways interfaces with activation of oncogenic pathways is seen in the case of primary mediastinal B-cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Advani R, Sharman JP, Smith SM et al (2010) Effect of Btk inhibitor PCI-32765 monotherapy on responses in patients with relapsed aggressive NHL: evidence of antitumor activity from a phase I study. J Clin Oncol 28(15s):8012a

    Google Scholar 

  • Agnelli L, Mereu E, Pellegrino E et al (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120(6):1274–1281

    CAS  PubMed  Google Scholar 

  • Agostinelli C, Hartmann S, Klapper W et al (2011) Peripheral T cell lymphomas with follicular T helper phenotype: a new basket or a distinct entity? Revising Karl Lennert’s personal archive. Histopathology 59(4):679–691

    PubMed  Google Scholar 

  • Aguiar BD (2008) Complete response of relapsed angioimmunoblastic T-cell lymphoma following therapy with bevacizumab. Ann Oncol 19(2):396–397

    Google Scholar 

  • Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL (2008) Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 112(9):3788–3797

    CAS  PubMed  Google Scholar 

  • Azran I, Schavinsky-Khrapunsky Y, Aboud M (2004) Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 1:20

    PubMed  Google Scholar 

  • Barrans SL, Fenton JAL, Banham A, Owen RG, Jack AS (2004) Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 104(9):2933–2935

    CAS  PubMed  Google Scholar 

  • Barreca A, Lasorsa E, Riera L et al (2011) Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol 47(1):R11–R23

    CAS  PubMed  Google Scholar 

  • Bea S, Ribas M, Hernandez JM et al (1999) Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 93(12):4365–4374

    CAS  PubMed  Google Scholar 

  • Bea S, Salaverria I, Armengol L et al (2009) Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 113(13):3059–3069

    CAS  PubMed  Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12(8):715–723

    CAS  PubMed  Google Scholar 

  • Bentz M, Barth TF, Bruderlein S et al (2001) Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer 30(4):393–401

    CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Borthakur A, Tyagi S et al (2010) B-cell CLL/lymphoma 10 (BCL10) is required for NF-kappaB production by both canonical and noncanonical pathways and for NF-kappaB-inducing kinase (NIK) phosphorylation. J Biol Chem 285(1):522–530

    CAS  PubMed  Google Scholar 

  • Boxus M, Twizere J-C, Legros S, Dewulf J-F, Kettmann R, Willems L (2008) The HTLV-1 Tax interactome. Retrovirology 5:76

    PubMed  Google Scholar 

  • Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8(7):1501–1515

    CAS  PubMed  Google Scholar 

  • Bruns I, Fox F, Reinecke P et al (2005) Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia 19(11):1993–1995

    CAS  PubMed  Google Scholar 

  • Cairns RA, Iqbal J, Lemonnier F et al (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119(8):1901–1903

    CAS  PubMed  Google Scholar 

  • Cao Y, Hunter Z, Zhou Y et al (2011) MicroRNA-21 and -155 are induced by a widely expressed mutation in MyD88 (L265P) in Waldenstrom’s macroglobulinemia. ASH Annu Meet Abstr 118(21):3957

    Google Scholar 

  • Capello D, Carbone A, Pastore C, Gloghini A, Saglio G, Gaidano G (1997) Point mutations of the BCL-6 gene in Burkitt’s lymphoma. Br J Haematol 99(1):168–170

    CAS  PubMed  Google Scholar 

  • Capello D, Vitolo U, Pasqualucci L et al (2000) Distribution and pattern of BCL-6 mutations throughout the spectrum of B-cell neoplasia. Blood 95(2):651–659

    CAS  PubMed  Google Scholar 

  • Capoulade C, Bressac-de Paillerets B, Lefrère I et al (1998) Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16(12):1603–1610

    CAS  PubMed  Google Scholar 

  • Cardy A, Sharp L (2001) Burkitt’s lymphoma: a review of the epidemiology. Kuwait Med J 33(4):293–306

    Google Scholar 

  • Chandramohan V, Mineva ND, Burke B et al (2008) c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27Kip1 cyclin dependent kinase inhibitor. J Cell Biochem 104(6):2091–2106

    CAS  PubMed  Google Scholar 

  • Chang T-C, Yu D, Lee Y-S et al (2007) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chanudet E, Ye H, Ferry J et al (2009) A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol 217(3):420–430

    CAS  PubMed  Google Scholar 

  • Chng WJ, Schop RF, Price-Troska T et al (2006) Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood 108(8):2755–2763

    CAS  PubMed  Google Scholar 

  • Coornaert B, Baens M, Heyninck K et al (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9(3):263–271

    CAS  PubMed  Google Scholar 

  • Corn PG, Kuerbitz SJ, van Noesel MM et al (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res 59(14):3352–3356

    CAS  PubMed  Google Scholar 

  • Cuadros M, Dave SS, Jaffe ES et al (2007) Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol 25(22):3321–3329

    PubMed  Google Scholar 

  • Dal Col J, Zancai P, Terrin L et al (2008) Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 111(10):5142–5151

    CAS  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264

    CAS  PubMed  Google Scholar 

  • de Leval L, Rickman DS, Thielen C et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109(11):4952–4963

    PubMed  Google Scholar 

  • Delsol G, Falini B, Muller-Hermelink H et al (2008) Anaplastic large cell lymphoma (ALCL) ALK-positive. In: Swerdlow S, Campo E, Harris N et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, p 326

    Google Scholar 

  • Dogan A, Ngu LS, Ng SH, Cervi PL (2005) Pathology and clinical features of angioimmunoblastic T-cell lymphoma after successful treatment with thalidomide. Leukemia 3:3

    Google Scholar 

  • Dogan A, Gaulard P, Jaffe ES, Ralfkiaer E, Muller-Hermelink HK (2008) Angioimmunoblastic T-cell lymphoma. In: Swerdlow S, Campo E, Harris NL et al (eds) WHO classification of tumors of hematopoietic and lymphoid tissues, IVth edn. IARC, Lyon, pp 309–311

    Google Scholar 

  • Donati D, Zhang LP, Chêne A et al (2004) Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect Immun 72(9):5412–5418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dreyling M, Hiddemann W (2009) Current treatment standards and emerging strategies in mantle cell lymphoma. Hematology Am Soc Hematol Educ Program:542–551.

    Google Scholar 

  • Du M-Q (2011) MALT lymphoma: many roads lead to nuclear factor-κb activation. Histopathology 58(1):26–38

    PubMed  Google Scholar 

  • Düwel M, Welteke V, Oeckinghaus A et al (2009) A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 182(12):7718–7728

    PubMed  Google Scholar 

  • Elsawa SF, Novak AJ, Ziesmer SC et al (2011) Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood 118(20):5540–5549

    CAS  PubMed  Google Scholar 

  • Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562

    CAS  PubMed  Google Scholar 

  • Fan J, Ma G, Nosaka K et al (2010) APOBEC3G generates nonsense mutations in human T-cell leukemia virus type 1 proviral genomes in vivo. J Virol 84(14):7278–7287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farinha P, Steidl C, Rimsza LM, Savage KJ, Connors JM, Gascoyne RD (2009) HLA-DR protein expression correlates with non-neoplastic T-cell infiltration and predicts survival in patients with Primary Mediastinal Large B Cell Lymphoma (PMBCL) treated with CHOP chemotherapy. ASH Annu Meet Abstr 114(22):133

    Google Scholar 

  • Feldman AL, Dogan A, Smith DI et al (2011) Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 117(3):915–919

    CAS  PubMed  Google Scholar 

  • Feuerhake F, Kutok JL, Monti S et al (2005) NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood 106(4):1392–1399

    CAS  PubMed  Google Scholar 

  • Fonseca R, Hayman S (2007) Waldenström macroglobulinaemia. Br J Haematol 138(6):700–720

    CAS  PubMed  Google Scholar 

  • Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K (2011) Peripheral T-cell lymphoma. Blood 117(25):6756–6767

    CAS  PubMed  Google Scholar 

  • Fu J, Qu Z, Yan P et al (2011) The tumor suppressor gene WWOX links the canonical and noncanonical NF-kappaB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 117(5):1652–1661

    CAS  PubMed  Google Scholar 

  • Galaktionov K, Chen X, Beach D (1996) Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382(6591):511–517

    CAS  PubMed  Google Scholar 

  • Garrison JB, Samuel T, Reed JC (2009) TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 28(13):1584–1593

    CAS  PubMed  Google Scholar 

  • Gartel AL, Ye X, Goufman E et al (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 98(8):4510–4515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger TR, Sharma N, Kim Y-M, Nyborg JK (2008) The human T-cell leukemia virus type 1 tax protein confers CBP/p300 recruitment and transcriptional activation properties to phosphorylated CREB. Mol Cell Biol 28(4):1383–1392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghielmini M, Zucca E (2009) How I treat mantle cell lymphoma. Blood 114(8):1469–1476

    CAS  PubMed  Google Scholar 

  • Ghobrial IM, Zhang Y, Liu Y et al (2011) The bone marrow niche in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):118–120

    CAS  PubMed  Google Scholar 

  • Gottardi M, Danesin C, Canal F et al (2008) Complete remission induced by thalidomide in a case of angioimmunoblastic T-cell lymphoma refractory to autologous stem cell transplantation. Leuk Lymphoma 49(9):1836–1838

    PubMed  Google Scholar 

  • Grassmann R, Aboud M, Jeang K-T (2005) Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24(39):5976–5985

    CAS  PubMed  Google Scholar 

  • Green MR, Monti S, Rodig SJ et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277

    CAS  PubMed  Google Scholar 

  • Gruhne B, Kamranvar SA, Masucci MG, Sompallae R (2009) EBV and genomic instability—a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Semin Cancer Biol 19(6):394–400

    CAS  PubMed  Google Scholar 

  • Guiter C, Dusanter-Fourt I, Copie-Bergman C et al (2004) Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104(2):543–549

    CAS  PubMed  Google Scholar 

  • Harhaj EW, Good L, Xiao G et al (2000) Somatic mutagenesis studies of NF-kappa B signaling in human T cells: evidence for an essential role of IKK gamma in NF-kappa B activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene 19(11):1448–1456

    CAS  PubMed  Google Scholar 

  • Hartmann S, Gesk S, Scholtysik R et al (2010) High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol 148(3):402–412

    PubMed  Google Scholar 

  • Hartmann S, Agostinelli C, Klapper W et al (2011) Revising the historical collection of epithelioid cell rich lymphomas of the Kiel Lymph node Registry: what is Lennert’s Lymphoma nowadays? Histopathology 59(6):1173–1182

    PubMed  Google Scholar 

  • Hasegawa H, Sawa H, Lewis MJ et al (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12(4):466–472

    CAS  PubMed  Google Scholar 

  • Hatjiharissi E, Ngo H, Leontovich AA et al (2007) Proteomic analysis of Waldenstrom macroglobulinemia. Cancer Res 67(8):3777–3784

    CAS  PubMed  Google Scholar 

  • Hatzimichael EC, Christou L, Bai M, Kolios G, Kefala L, Bourantas KL (2001) Serum levels of IL-6 and its soluble receptor (sIL-6R) in Waldenstrom’s macroglobulinemia. Eur J Haematol 66(1):1–6

    CAS  PubMed  Google Scholar 

  • Hecht JL, Aster JC (2000) Molecular biology of Burkitt’s lymphoma. J Clin Oncol 18(21):3707–3721

    CAS  PubMed  Google Scholar 

  • Herrmann A, Hoster E, Zwingers T et al (2009) Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 27(4):511–518

    PubMed  Google Scholar 

  • Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA (2004) Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101(1):239–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodge LS, Ansell SM (2011) Jak/Stat pathway in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):112–114

    CAS  PubMed  Google Scholar 

  • Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27(50):6462–6472

    CAS  PubMed  Google Scholar 

  • Honma K, Tsuzuki S, Nakagawa M et al (2009) TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 114(12):2467–2475

    CAS  PubMed  Google Scholar 

  • Huang Y, Moreau A, Dupuis J et al (2009) Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol 33(5):682–690

    PubMed  Google Scholar 

  • Ikezoe T, Nishioka C, Bandobashi K et al (2007) Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 31(5):673–682

    CAS  PubMed  Google Scholar 

  • Inghirami G, Pileri SA (2011) Anaplastic large-cell lymphoma. Semin Diagn Pathol 28(3):190–201

    PubMed  Google Scholar 

  • Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115(5):1026–1036

    CAS  PubMed  Google Scholar 

  • Isaacson P (2005) Update on MALT lymphomas. Best Pract Res Clin Haematol 18(1):57–68

    CAS  PubMed  Google Scholar 

  • Isaacson PG, Du M-Q (2004) Timeline: MALT lymphoma: from morphology to molecules. Nat Rev Cancer 4(8):644–653

    CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaffe ES, Harris NL, Stein H et al (2008) Introduction and overview of the classification of lymphoid neoplasm. In: Swerdlow S, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissue, IVth edn. IARC, Lyon, pp 157–166

    Google Scholar 

  • Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7(10):750–762

    CAS  PubMed  Google Scholar 

  • Joos S, Otano-Joos MI, Ziegler S et al (1996) Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 87(4):1571–1578

    CAS  PubMed  Google Scholar 

  • Kawadler H, Gantz MA, Riley JL, Yang X (2008) The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol Cell 31(3):415–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JK, Diehl JA (2009) Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 220(2):292–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y-M, Ramírez JA, Mick JE, Giebler HA, Yan J-P, Nyborg JK (2007) Molecular characterization of the Tax-containing HTLV-1 enhancer complex reveals a prominent role for CREB phosphorylation in Tax transactivation. J Biol Chem 282(26):18750–18757

    CAS  PubMed  Google Scholar 

  • Kim Y-M, Geiger TR, Egan DI, Sharma N, Nyborg JK (2010) The HTLV-1 tax protein cooperates with phosphorylated CREB, TORC2 and p300 to activate CRE-dependent cyclin D1 transcription. Oncogene 29(14):2142–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91(5):1680–1687

    CAS  PubMed  Google Scholar 

  • Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 149(4):484–497

    CAS  PubMed  Google Scholar 

  • Kornblau SM, Goodacre A, Cabanillas F (1991) Chromosomal abnormalities in adult non-endemic Burkitt’s lymphoma and leukemia: 22 new reports and a review of 148 cases from the literature. Hematol Oncol 9(2):63–78

    CAS  PubMed  Google Scholar 

  • Kriangkum J, Taylor B (2006) Impaired class switch recombination (CSR) in Waldenstrom macroglobulinemia (WM) despite apparently normal CSR machinery. Blood 107(7):2920–2927

    CAS  PubMed  Google Scholar 

  • Kridel R, Meissner B, Rogic S et al (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119(9):1963–1971

    CAS  PubMed  Google Scholar 

  • Laimer D, Dolznig H, Vesely PW et al (2012) PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med 18(11):1699–1704

    CAS  PubMed  Google Scholar 

  • Lamant L, de Reynies A, Duplantier MM et al (2007) Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109(5):2156–2164

    CAS  PubMed  Google Scholar 

  • Laurent C, Fazilleau N, Brousset P (2010) A novel subset of T-helper cells: follicular T-helper cells and their markers. Haematologica 95(3):356–358

    CAS  PubMed  Google Scholar 

  • Lemonnier F, Couronne L, Parrens M et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120(7):1466–1469

    CAS  PubMed  Google Scholar 

  • Lenz G, Wright GW, Emre NC et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105(36):13520–13525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang M, Han X, Vadhan-Raj S et al (2010) HDM4 is overexpressed in mantle cell lymphoma and its inhibition induces p21 expression and apoptosis. Mod Pathol 23(3):381–391

    CAS  PubMed  Google Scholar 

  • Lin S-C, Lo Y-C, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindström MS, Wiman KG (2002) Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol 12(5):381–387

    PubMed  Google Scholar 

  • Lindström MS, Klangby U, Wiman KG (2001) p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 20(17):2171–2177

    PubMed  Google Scholar 

  • Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a–Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83

    CAS  PubMed  Google Scholar 

  • Lucas PC, Yonezumi M, Inohara N et al (2001) Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-kappaB signaling pathway. J Biol Chem 21:21

    Google Scholar 

  • Malinverni C, Unterreiner A, Staal J et al (2010) Cleavage by MALT1 induces cytosolic release of A20. Biochem Biophys Res Commun 400(4):543–547

    CAS  PubMed  Google Scholar 

  • Martin P, Chadburn A, Christos P et al (2008) Intensive treatment strategies may not provide superior outcomes in mantle cell lymphoma: overall survival exceeding 7 years with standard therapies. Ann Oncol 19(7):1327–1330

    CAS  PubMed  Google Scholar 

  • Martinez-Delgado B, Melendez B, Cuadros M et al (2004) Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res 10(15):4971–4982

    CAS  PubMed  Google Scholar 

  • Martinez-Delgado B, Cuadros M, Honrado E et al (2005) Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 19(12):2254–2263

    CAS  PubMed  Google Scholar 

  • Mason DY, Harris NL, Delsol G et al (2008) Amaplastic large cell lymphoma (ALCL) ALK-negative. In: Swerdlow S, Campo E, Harris N et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, p 326

    Google Scholar 

  • Matsuoka M, Jeang K-T (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7(4):270–280

    CAS  PubMed  Google Scholar 

  • Matutes E (2007) Adult T-cell leukaemia/lymphoma. J Clin Pathol 60(12):1373–1377

    CAS  PubMed  Google Scholar 

  • Melzner I, Bucur AJ, Bruderlein S et al (2005) Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105(6):2535–2542

    CAS  PubMed  Google Scholar 

  • Melzner I, Weniger MA, Bucur AJ et al (2006) Biallelic deletion within 16p13.13 including SOCS-1 in Karpas1106P mediastinal B-cell lymphoma line is associated with delayed degradation of JAK2 protein. Int J Cancer 118(8):1941–1944

    CAS  PubMed  Google Scholar 

  • Merkel O, Hamacher F, Laimer D et al (2010) Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK- anaplastic large-cell lymphoma. Proc Natl Acad Sci U S A 107(37):16228–16233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Sato K, Niino D et al (2012) Clinicopathologic analysis of peripheral T-cell lymphoma, follicular variant, and comparison with angioimmunoblastic T-cell lymphoma: Bcl-6 expression might affect progression between these disorders. Am J Clin Pathol 137(6):879–889

    CAS  PubMed  Google Scholar 

  • Moller P, Lammler B, Herrmann B, Otto HF, Moldenhauer G, Momburg F (1986) The primary mediastinal clear cell lymphoma of B-cell type has variable defects in MHC antigen expression. Immunology 59(3):411–417

    CAS  PubMed  Google Scholar 

  • Molyneux EM, Rochford R, Griffin B et al (2012) Burkitt’s lymphoma. Lancet 379(9822):1234–1244

    PubMed  Google Scholar 

  • Ng PW, Iha H, Iwanaga Y et al (2001) Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 20(33):4484–4496

    CAS  PubMed  Google Scholar 

  • Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332):115–119

    CAS  PubMed  Google Scholar 

  • O’Connor OA (2007) Mantle cell lymphoma: identifying novel molecular targets in growth and survival pathways. Hematology Am Soc Hematol Educ Program 2007:270–276

    Google Scholar 

  • Oshiro A, Tagawa H, Ohshima K et al (2006) Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 107(11):4500–4507

    CAS  PubMed  Google Scholar 

  • Owen RG, Treon SP, Al-Katib A et al (2003) Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 30(2):110–115

    PubMed  Google Scholar 

  • Paganin M, Ferrando A (2011) Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 25(2):83–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ (2006) Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 169(6):2171–2180

    CAS  PubMed  Google Scholar 

  • Piccaluga PP, Agostinelli C, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA (2005) Expression of platelet-derived growth factor receptor alpha in peripheral T-cell lymphoma not otherwise specified. Lancet Oncol 6(6):440

    PubMed  Google Scholar 

  • Piccaluga PP, Agostinelli C, Califano A et al (2007a) Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 117(3):823–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piccaluga PP, Agostinelli C, Califano A et al (2007b) Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 67(22):10703–10710

    CAS  PubMed  Google Scholar 

  • Piccaluga P, Laginestra MA, Rossi M et al (2011) Identification of differentially expressed miRNAs in peripheral T-cell lymphomas. Ash Annu Meet Abstr 118:773

    Google Scholar 

  • Piccaluga PP, Fuligni F, De Leo A et al (2013) Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas. Results of a phase III diagnostic accuracy study. J Clin Oncol 31(24):3019–3025

    Google Scholar 

  • Pileri S, Weisenburger D, Sng I et al (2008) Peripheral T-cell lymphoma, not otherwise specified. In: Swerdlow S, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, IVth edn. IARC, Lyon, pp 306–308

    Google Scholar 

  • Pileri A Jr, Agostinelli C, Righi S et al (2012) Vascular endothelial growth factor (VEGF) expression in mycosis fungoides. In: EORTC congress, Vienna, 7–9 September 2012

    Google Scholar 

  • Piva R, Agnelli L, Pellegrino E et al (2010) Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 28(9):1583–1590

    CAS  PubMed  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77(12):7415–7419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proietti FA, Carneiro-Proietti ABF, Catalan-Soares BC, Murphy EL (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24(39):6058–6068

    CAS  PubMed  Google Scholar 

  • Psyrri A, Papageorgiou S, Liakata E et al (2009) Phosphatidylinositol 3′-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res 15(18):5724–5732

    CAS  PubMed  Google Scholar 

  • Puente XS, Pinyol M, Quesada V et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pui JC, Allman D, Xu L et al (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11(3):299–308

    CAS  PubMed  Google Scholar 

  • Qu Z, Xiao G (2011) Human T-cell lymphotropic virus: a model of NF-κB-associated tumorigenesis. Viruses 3(6):714–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rainey JJ, Mwanda WO, Wairiumu P, Moormann AM, Wilson ML, Rochford R (2007) Spatial distribution of Burkitt’s lymphoma in Kenya and association with malaria risk. Trop Med Int Health 12(8):936–943

    PubMed  Google Scholar 

  • Rawlings DJ, Sommer K, Moreno-García ME (2006) The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6(11):799–812

    CAS  PubMed  Google Scholar 

  • Rinaldi A, Kwee I, Taborelli M et al (2006) Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 132(3):303–316

    CAS  PubMed  Google Scholar 

  • Ritz O, Guiter C, Castellano F et al (2009) Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 114(6):1236–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzatti EG, Falcao RP, Panepucci RA et al (2005) Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol 130(4):516–526

    CAS  PubMed  Google Scholar 

  • Roberts RA, Wright G, Rosenwald AR et al (2006) Loss of major histocompatibility class II gene and protein expression in primary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival. Blood 108(1):311–318

    CAS  PubMed  Google Scholar 

  • Roccaro AM, Sacco A, Jia X et al (2010) microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116(9):1506–1514

    CAS  PubMed  Google Scholar 

  • Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM (2011) From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 10(15):2485–2496

    CAS  PubMed  Google Scholar 

  • Rosenwald A, Wright G, Wiestner A et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3(2):185–197

    CAS  PubMed  Google Scholar 

  • Rossi M, Agostinelli C, Righi S et al (2012) BCL10 down-regulation in peripheral T-cell lymphomas. Hum Pathol 43(12):2266–2273

    CAS  PubMed  Google Scholar 

  • Rudelius M, Pittaluga S, Nishizuka S et al (2006) Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108(5):1668–1676

    CAS  PubMed  Google Scholar 

  • Sacco A, Maiso P, Azab A et al (2011) Key role of microRNAs in Waldenström’s macroglobulinemia pathogenesis. Clin Lymphoma Myeloma Leuk 11(1):109–111

    CAS  PubMed  Google Scholar 

  • Saggioro D (2011) Anti-apoptotic effect of Tax: an NF-κB path or a CREB way? Viruses 3(7):1001–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahota SS, Forconi F, Ottensmeier CH et al (2002) Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 100(4):1505–1507

    CAS  PubMed  Google Scholar 

  • Salaverria I, Zettl A, Bea S et al (2008) Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica 93(9):1327–1334

    PubMed  Google Scholar 

  • Sanchez-Izquierdo D, Buchonnet G, Siebert R et al (2003) MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 101(11):4539–4546

    CAS  PubMed  Google Scholar 

  • Sander S, Bullinger L, Wirth T (2009) Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle 8(4):556–559

    CAS  PubMed  Google Scholar 

  • Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J (2000) Involvement of Myc activity in a G1/S-promoting mechanism parallel to the pRb/E2F pathway. Mol Cell Biol 20(10):3497–3509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satou Y, Yasunaga J-i, Zhao T et al (2011) HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 7(2):e1001274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savage KJ, Monti S, Kutok JL et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102(12):3871–3879

    CAS  PubMed  Google Scholar 

  • Savage KJ, Harris NL, Vose JM et al (2008) ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 111(12):5496–5504

    CAS  PubMed  Google Scholar 

  • Schmitz R, Hansmann ML, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senftleben U, Cao Y, Xiao G et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293(5534):1495–1499

    CAS  PubMed  Google Scholar 

  • Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327(5969):1135–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2(10):731–737

    CAS  PubMed  Google Scholar 

  • Staudt, LM, Shaffer, AL, and Young, RM (2012) Pathogenesis of human B cell lymphomas. Annu. Rev. Immunol. 30:565–610

    PubMed  Google Scholar 

  • Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Streubel B, Lamprecht A, Dierlamm J et al (2003) T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101(6):2335–2339

    CAS  PubMed  Google Scholar 

  • Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A (2005) T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19(4):652–658

    CAS  PubMed  Google Scholar 

  • Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A (2006) Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20(2):313–318

    CAS  PubMed  Google Scholar 

  • Strupp C, Aivado M, Germing U, Gattermann N, Haas R (2002) Angioimmunoblastic lymphadenopathy (AILD) may respond to thalidomide treatment: two case reports. Leuk Lymphoma 43(1):133–137

    CAS  PubMed  Google Scholar 

  • Sun L, Deng L, Ea C-K, Xia Z-P, Chen ZJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14(3):289–301

    CAS  PubMed  Google Scholar 

  • Swaims AY, Khani F, Zhang Y et al (2010) Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells. Blood 116(16):2994–3003

    CAS  PubMed  Google Scholar 

  • Swerdlow S, Campo E et al (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissue (IARC WHO classification of tumours), 4th edn. IARC Press, Lyon, p 429

    Google Scholar 

  • Takatsuki K (2005) Discovery of adult T-cell leukemia. Retrovirology 2:16

    PubMed  Google Scholar 

  • Taylor G (2007) Molecular aspects of HTLV-I infection and adult T-cell leukaemia/lymphoma. J Clin Pathol 60(12):1392–1396

    CAS  PubMed  Google Scholar 

  • Terme J-M, Wencker M, Favre-Bonvin A et al (2008) Cross talk between expression of the human T-cell leukemia virus type 1 Tax transactivator and the oncogenic bHLH transcription factor TAL1. J Virol 82(16):7913–7922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson MA, Stumph J, Henrickson SE et al (2005) Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol 36(5):494–504

    CAS  PubMed  Google Scholar 

  • Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 6(12):913–924

    CAS  PubMed  Google Scholar 

  • Treon SP, Xu L, Yang G et al (2012) MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 367(9):826–833

    CAS  PubMed  Google Scholar 

  • Vose J, Armitage J, Weisenburger D (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130

    PubMed  Google Scholar 

  • Watanabe M, Ohsugi T, Shoda M et al (2005) Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106(7):2462–2471

    CAS  PubMed  Google Scholar 

  • Weinstein IB (2002) CANCER: enhanced: addiction to oncogenes–the Achilles heal of cancer. Science 297(5578):63–64

    CAS  PubMed  Google Scholar 

  • Weniger MA, Pulford K, Gesk S et al (2006) Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia 20(10):1880–1882

    CAS  PubMed  Google Scholar 

  • Weniger MA, Gesk S, Ehrlich S et al (2007) Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 46(4):406–415

    CAS  PubMed  Google Scholar 

  • Wessendorf S, Barth TF, Viardot A et al (2007) Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia 21(12):2463–2469

    CAS  PubMed  Google Scholar 

  • Wilda M, Bruch J, Harder L et al (2003) Inactivation of the ARF–MDM-2–p53 pathway in sporadic Burkitt’s lymphoma in children. Leukemia 18(3):584–588

    Google Scholar 

  • Willis TG, Jadayel DM, Du MQ et al (1999) Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96(1):35–45

    CAS  PubMed  Google Scholar 

  • Xiao G, Rabson AB, Young W, Qing G, Qu Z (2006) Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev 17(4):281–293

    CAS  PubMed  Google Scholar 

  • Yang G, Zhou Y, Liu X, Cao Y, Hunter Z, Treon SP (2011) Disruption of MYD88 pathway signaling leads to loss of constitutive IRAK1, NF-kappabeta and JAK/STAT signaling and induces apoptosis of cells expressing the MYD88 L265P mutation in Waldenstrom’s macroglobulinemia. ASH Annu Meet Abstr 118(21):597

    Google Scholar 

  • Yasunaga J, Matsuoka M (2011) Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol 94(5):435–442

    CAS  PubMed  Google Scholar 

  • Yoshita M, Higuchi M, Takahashi M, Oie M, Tanaka Y, Fujii M (2012) Activation of mTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to interleukin-2-independent growth. Cancer Sci 103(2):369–374

    CAS  PubMed  Google Scholar 

  • Yustein JT, Dang CV (2007) Biology and treatment of Burkitt’s lymphoma. Curr Opin Hematol 14(4):375–381

    PubMed  Google Scholar 

  • Zech L, Haglund U, Nilsson K, Klein G (1976) Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer 17(1):47–56

    CAS  PubMed  Google Scholar 

  • Zeller KI, Zhao X, Lee CWH et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103(47):17834–17839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Siebert R, Yan M et al (1999) Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 22(1):63–68

    CAS  PubMed  Google Scholar 

  • Zhao JJ, Lin J, Lwin T et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115(13):2630–2639

    CAS  PubMed  Google Scholar 

  • Zucca E, Bertoni F, Roggero E, Cavalli F (2000) The gastric marginal zone B-cell lymphoma of MALT type. Blood 96(2):410–419

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elias Campo for critical reading of the final manuscript. Adrian Wiestner is supported by the intramural program of the NHLBI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Wiestner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lipsky, A., Pérez-Galán, P., Agostinelli, C., Piccaluga, P.P., Pileri, S.A., Wiestner, A. (2014). Signaling Pathways in Rare Lymphomas. In: Dreyling, M., Williams, M. (eds) Rare Lymphomas. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39590-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39590-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39589-5

  • Online ISBN: 978-3-642-39590-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics