Skip to main content

High Frame Rate Egomotion Estimation

  • Conference paper
Computer Vision Systems (ICVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7963))

Included in the following conference series:

Abstract

In this paper, we present an algorithm for doing high frame rate egomotion estimation. We achieve this by using a basis flow model, along with a novel inference algorithm, that uses spatio-temporal gradients, foregoing the computation of the slow and noisy optical flow. The inherent linearity in our model allows us to achieve fine grained parallelism. We demonstrate this by running our algorithm on GPUs to achieve egomotion estimation at 120Hz.

Image motion is tightly coupled with the camera egomotion and depth of the scene. Hence, we validate our approach by using the egomotion estimate to compute the depth of a static scene. Our applications are aimed towards autonomous navigation scenarios where, it is required to have a quick estimate of the state of the vehicle, while freeing up computation time for higher level vision tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An Improved Algorithm for TV-L1 Optical Flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Arkin, R.C.: The role of mental rotations in primate-inspired robot navigation. Cognitive Processing 13, 83–87 (2012)

    Article  Google Scholar 

  3. Beall, C., Nguyen, T.H.D., Ok, C., Dellaert, F.: Attitude heading reference system with rotation-aiding visual landmarks (2012)

    Google Scholar 

  4. Bruss, A.R., Horn, B.K.P.: Passive navigation. Computer Vision, Graphics, and Image Processing 21, 3–20 (1983)

    Article  Google Scholar 

  5. Florian, R., Heiko, N.: A review and evaluation of methods estimating ego-motion. Comput. Vis. Image Underst. 116(5), 606–633 (2012)

    Article  Google Scholar 

  6. Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Heeger, D., Jepson, A.: Subspace methods for recovering rigid motion I: Algorithm and implementation. International Journal of Computer Vision 7(2), 95–117 (1992)

    Article  Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  9. Irani, M., Anandan, P.: All about direct methods (1999)

    Google Scholar 

  10. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  11. Longuet-Higgins, H.C., Prazdny, K.: The Interpretation of a Moving Retinal Image. Proceedings of the Royal Society of London. Series B, Biological Sciences (1934-1990) 208(1173), 385–397 (1980)

    Google Scholar 

  12. Matthies, L., Szeliski, R., Kanade, T.: Kalman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision 3, 209–236 (1989)

    Article  Google Scholar 

  13. Rieger, J.H., Lawton, D.T.: Sensor motion and relative depth from difference fields of optic flows. In: IJCAI, pp. 1027–1031 (1983)

    Google Scholar 

  14. Roberts, R., Potthast, C., Dellaert, F.: Learning general optical flow subspaces for egomotion estimation and detection of motion anomalies. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srinivasan, N., Roberts, R., Dellaert, F. (2013). High Frame Rate Egomotion Estimation. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39402-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39401-0

  • Online ISBN: 978-3-642-39402-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics