Skip to main content

Virasoro Central Charges for Nichols Algebras

  • Conference paper
Conformal Field Theories and Tensor Categories

Part of the book series: Mathematical Lectures from Peking University ((MLPKU))

Abstract

A Virasoro central charge can be associated with each Nichols algebra with diagonal braiding in a way that is invariant under the Weyl groupoid action. The central charge takes very suggestive values for some items in Heckenberger’s list of rank-2 Nichols algebras. In particular, this might be viewed as an indication of the existence of reasonable logarithmic extensions of W 3WA 2, WB 2, and WG 2 models of conformal field theory. In the W 3 case, the construction of an octuplet extended algebra—a counterpart of the triplet (1,p) algebra—is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the submission of this paper, some progress has been achieved in the cases described in 2.2 and 3.1 in what follows [60].

  2. 2.

    Notably, the conditions on the braiding matrix elements selecting a Nichols algebra involve only the self-braidings q i,i and the monodromies q i,j q j,i for ij.

  3. 3.

    If the diagonal braiding is of Cartan type, then Weyl reflections preserve the Cartan matrix. If a generalized Cartan matrix (not of Cartan type) is the same for the entire class of Weyl-reflected braided matrices, then such a generalized Cartan matrix and the braiding matrix are said to belong to the standard type. Nonstandard braidings do exist [15, 27].

  4. 4.

    Recall that rational conformal field theories are generally defined as the cohomology of a complex associated with the screenings, whereas logarithmic models are defined by the kernel (cf. [18, 3236]). In particular, this allows interesting logarithmic conformal models to exist in the cases where the rational model is nonexistent (the (p,1) series) or trivial (the (2,3) model).

  5. 5.

    The exponentials in (13) are assumed to be normal ordered, and the second line involves the (standard) abuse of notation: nested normal ordering from right to left is in fact understood after the expression is expanded.

  6. 6.

    This coset equivalence belongs to a vast subject discussed in [48, 49].

  7. 7.

    The Wakimoto bosonization [50] yields two essentially different three-boson realizations of \(\widehat {s\ell }(2)\)—the “symmetric” and the “nonsymmetric” ones, respectively centralizing two fermionic screenings and one bosonic plus one fermionic screening. The names refer to the “j +j symmetric” structure of (15) and the “asymmetric” structure of (13). Somewhat broader, the “variously symmetric” realizations are discussed in [47].

  8. 8.

    T. Creutzig has suggested that this a quotient of some CFT that has central charge zero and contains the subalgebra. The algebras can be rather versatile [5355].

References

  1. Semikhatov, A.M., Tipunin, I.Y.: The Nichols algebra of screenings. Commun. Contemp. Math. 14, 1250029 (2012). arXiv:1101.5810

    Article  MathSciNet  Google Scholar 

  2. Nichols, W.D.: Bialgebras of type one. Commun. Algebra 6, 1521–1552 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruskiewitsch, N., Graña, M.: Braided Hopf algebras over non abelian finite groups. Bol. Acad. Nacional de Ciencias (Cordoba) 63, 45–78 (1999). arXiv:math/9802074

    MATH  Google Scholar 

  4. Andruskiewitsch, N., Schneider, H.-J.: Pointed Hopf algebras. In: New Directions in Hopf Algebras. MSRI Publications, vol. 43, pp. 1–68. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Andruskiewitsch, N.: Some remarks on Nichols algebras. In: Bergen, J., Catoiu, S., Chin, W. (eds.) Hopf Algebras, pp. 25–45. Dekker, New York (2004)

    Google Scholar 

  6. Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171, 375–417 (2010). arXiv:math/0502157

    Article  MathSciNet  MATH  Google Scholar 

  7. Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220, 59–124 (2009). math/0605795

    Article  MathSciNet  MATH  Google Scholar 

  8. Andruskiewitsch, N., Heckenberger, I., Schneider, H.-J.: The Nichols algebra of a semisimple Yetter-Drinfeld module. Amer. J. Math. 132, 1493–1547 (2010). arXiv:0803.2430

    MathSciNet  MATH  Google Scholar 

  9. Andruskiewitsch, N., Radford, D., Schneider, H.-J.: Complete reducibility theorems for modules over pointed Hopf algebras. J. Algebra 324, 2932–2970 (2010). arXiv:1001.3977

    Article  MathSciNet  MATH  Google Scholar 

  10. Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164, 175–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graña, M., Heckenberger, I., Vendramin, L.: Nichols algebras of group type with many quadratic relations. arXiv:1004.3723

  12. Graña, M., Heckenberger, I.: On a factorization of graded Hopf algebras using Lyndon words. J. Algebra 314, 324–343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Andruskiewitsch, N., Fantino, F., Garcia, G.A., Vendramin, L.: On Nichols algebras associated to simple racks. In: Groups, Algebras and Applications. Contemp. Math., vol. 537, pp. 31–56. Am. Math. Soc., Providence (2011). arXiv:1006.5727

    Chapter  Google Scholar 

  14. Andruskiewitsch, N., Angiono, I., Yamane, H.: On pointed Hopf superalgebras. In: New Developments in Lie Theory and Its Applications. Contemp. Math., vol. 544. Am. Math. Soc., Providence (2011). arXiv:1009.5148

    Google Scholar 

  15. Angiono, I.: On Nichols algebras with standard braiding. Algebra Number Theory 3, 35–106 (2009). arXiv:0804.0816

    Article  MathSciNet  MATH  Google Scholar 

  16. Angiono, I.E.: A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. arXiv:1008.4144

  17. Angiono, I.: On Nichols algebras of diagonal type. arXiv:1104.0268

  18. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Y.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004). hep-th/0306274

    Article  MathSciNet  MATH  Google Scholar 

  19. Heckenberger, I., Yamane, H.: A generalization of Coxeter groups, root systems, and Matsumoto’s theorem. Math. Z. 259, 255–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heckenberger, I., Schneider, H.-J.: Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid. arXiv:0909.0293

  21. Heckenberger, I.: Finite dimensional rank 2 Nichols algebras of diagonal type I: examples. arXiv:math/0402350

  22. Heckenberger, I.: Finite dimensional rank 2 Nichols algebras of diagonal type II: classification. arXiv:math/0404008

  23. Helbig, M.: On the lifting of Nichols algebras. arXiv:1003.5882

  24. Cuntz, M., Heckenberger, I.: Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213, 1112–1128 (2009). arXiv:0805.1810

    Article  MathSciNet  MATH  Google Scholar 

  25. Cuntz, M., Heckenberger, I.: Finite Weyl groupoids of rank three. arXiv:0912.0212

  26. Cuntz, M., Heckenberger, I.: Finite Weyl groupoids. arXiv:1008.5291

  27. Andruskiewitsch, N., Angiono, I.E.: On Nichols algebras with generic braiding. In: Brzezinski, T., Gómez Pardo, J.L., Shestakov, I., Smith, P.F. (eds.) Modules and Comodules. Trends in Mathematics, pp. 47–64 (2008). arXiv:math/0703924

    Chapter  Google Scholar 

  28. Kausch, H.G.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259, 448 (1991)

    Article  MathSciNet  Google Scholar 

  29. Gaberdiel, M.R., Kausch, H.G.: Indecomposable fusion products. Nucl. Phys. B 477, 293–318 (1996). hep-th/9604026

    Article  MathSciNet  Google Scholar 

  30. Gaberdiel, M.R., Kausch, H.G.: A rational logarithmic conformal field theory. Phys. Lett. B 386, 131–137 (1996). hep-th/9606050

    Article  MathSciNet  Google Scholar 

  31. Gaberdiel, M.R., Kausch, H.G.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999). hep-th/9807091

    Article  MathSciNet  MATH  Google Scholar 

  32. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006). arXiv:hep-th/0504093

    Article  MathSciNet  MATH  Google Scholar 

  33. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006). arXiv:hep-th/0606196

    Article  MathSciNet  MATH  Google Scholar 

  34. Adamović, D., Milas, A.: On the triplet vertex algebra W(p). Adv. Math. 217, 2664–2699 (2008). arXiv:0707.1857v2

    Article  MathSciNet  MATH  Google Scholar 

  35. Adamović, D., Milas, A.: The N=1 triplet vertex operator superalgebras. Commun. Math. Phys. 288, 225–270 (2009). arXiv:0712.0379

    Article  MATH  Google Scholar 

  36. Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. arXiv:0902.3417

  37. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT. Theor. Math. Phys. 148, 1210–1235 (2006). arXiv:math/0512621

    Article  MathSciNet  MATH  Google Scholar 

  38. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Kazhdan-Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48, 032303 (2007). arXiv:math/0606506

    Article  MathSciNet  Google Scholar 

  39. Frenkel, E., Kac, V., Wakimoto, M.: Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys. 147, 295–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hamada, K.-j., Takao, M.: Spin-4 current algebra. Phys. Lett. B 209, 247–251 (1988)

    Article  MathSciNet  Google Scholar 

  41. Figueroa-O’Farrill, J.M., Schrans, S., Thielemans, K.: On the Casimir algebra of B 2. Phys. Lett. B 263, 378–384 (1991)

    Article  MathSciNet  Google Scholar 

  42. Ito, K., Terashima, S.: Free field realization of WBC n and WG 2 algebras. Phys. Lett. B 354, 220–231 (1995). hep-th/9503165

    Article  MathSciNet  Google Scholar 

  43. Kausch, H.G., Watts, G.M.T.: Duality in quantum Toda theory and W-algebras. Nucl. Phys. B 386, 166–192 (1992). hep-th/9202070

    Article  MathSciNet  Google Scholar 

  44. Figueroa-O’Farrill, J.M., Schrans, S.: The spin 6 extended conformal algebra. Phys. Lett. B 245, 471–476 (1990)

    Article  MathSciNet  Google Scholar 

  45. Zhu, C.-J.: The complete structure of the WG 2 algebra and its BRST quantization. hep-th/9508126

  46. Bowcock, P., Feigin, B.L., Semikhatov, A.M., Taormina, A.: \(\widehat{s\ell}(2|1)\) and \(\widehat{D}(2|1;\alpha)\) as vertex operator extensions of dual affine sℓ(2) algebras. Commun. Math. Phys. 214, 495–545 (2000). hep-th/9907171

    Article  MathSciNet  MATH  Google Scholar 

  47. Feigin, B.L., Semikhatov, A.M.: algebras. Nucl. Phys. B 698, 409–449 (2004). math/0401164

    Article  MathSciNet  MATH  Google Scholar 

  48. Blumenhagen, R., Eholzer, W., Honecker, A., Hornfeck, K., Huebel, R.: Unifying W-algebras. Phys. Lett. B 332, 51–60 (1994). hep-th/9404113

    Article  MathSciNet  Google Scholar 

  49. Blumenhagen, R., Eholzer, W., Honecker, A., Hornfeck, K., Huebel, R.: Coset realization of unifying W-algebras. Int. J. Mod. Phys. A 10, 2367–2430 (1995). hep-th/9406203

    Article  MATH  Google Scholar 

  50. Wakimoto, M.: Fock representations of the affine Lie algebra \(A_{1}^{(1)}\). Commun. Math. Phys. 104, 605–609 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Polyakov, A.M.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5, 833 (1990)

    Article  MathSciNet  Google Scholar 

  52. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139, 71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Creutzig, T., Gao, P., Linshaw, A.R.: Fermionic coset, critical level \(W^{(2)}_{4}\)-algebra and higher spins. arXiv:1111.6603

  54. Creutzig, T., Gao, P., Linshaw, A.R.: A commutant realization of \(W^{(2)}_{n}\) at critical level. arXiv:1109.4065

  55. Creutzig, T., Ridout, D.: W-Algebras extending affine gl(1|1). arXiv:1111.5049

  56. Blumenhagen, R., Flohr, M., Kliem, A., Nahm, W., Recknagel, A., Varnhagen, R.: W-algebras with two and three generators. Nucl. Phys. B 361, 255–289 (1991)

    Article  MathSciNet  Google Scholar 

  57. Blumenhagen, R., Eholzer, W., Honecker, A., Huebel, R.: New N=1 extended superconformal algebras with two and three generators. Int. J. Mod. Phys. A 7, 7841–7871 (1992). hep-th/9207072

    Article  MATH  Google Scholar 

  58. Eholzer, W., Honecker, A., Huebel, R.: How complete is the classification of W-symmetries? Phys. Lett. B 308, 42–50 (1993). hep-th/9302124

    Article  MathSciNet  Google Scholar 

  59. Angiono, I.: Nichols algebras of unidentified diagonal type. arXiv:1108.5157

  60. Semikhatov, A.M., Tipunin, I.Y.: Logarithmic \(\widehat{s\ell}(2)\) CFT models from Nichols algebras. 1. J. Phys. A, Math. Theor. (to appear). arXiv:1301.2235

Download references

Acknowledgements

It is a pleasure to acknowledge that these notes were compiled partly as a result of the Conference on Conformal Field Theory and Tensor Categories in Beijing. Very special thanks go to N. Andruskiewitsch, J. Fjelstad, J. Fuchs, A. Gainutdinov, M. Mombelli, I. Runkel, C. Schweigert, and A. Virelizier for the very useful discussions and, of course, to Yi-Zhi Huang and the other organizers for their hospitality in Beijing. I also thank T. Creutzig, I. Tipunin, and S. Wood for useful discussions and I. Angiono for comments, and the referee for suggestions. This paper was supported in part by the RFBR grant 11-01-00830 and the RFBR–CNRS grant 09-01-93105.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix A: Virasoro Algebra

In CFT, the Virasoro algebra

$$ [L_m,L_n]=(m-n) L_{m+n}+ \frac{c}{12}(m-1)m(m+1),\quad m,n\in \mathbb {Z}$$

standardly appears in the guise of an energy–momentum tensor \(T(z)=\sum_{n\in \mathbb {Z}}L_{n} z^{-n-2}\)—a (chiral) field on the complex plane that satisfies the OPEs

$$ T(z) T(w)=\frac{c/2}{(z-w)^4} + \frac{2T(z)}{(z-w)^2} + \frac{\partial T(z)}{z-w}. $$

The c parameter (understood to be multiplied by the unit operator whenever necessary) is called the central charge.

For θ bosonic fields φ(z)=(φ 1(z),…,φ θ(z)) with the OPEs

$$ \varphi^i(z)\varphi^j(w)= \delta^{ij}\log(z-w), $$
(16)

which are also frequently used in calculations in the form

$$ \partial\varphi^i(z) \partial\varphi^j(w)= \frac{\delta^{ij}}{(z-w)^2}, $$

the energy–momentum tensors are parameterized by \(\xi\in \mathbb {C}^{\theta}\),

$$ T_{\xi}(z)= \frac{1}{2}\partial\varphi(z).\partial \varphi(z) + \xi.\partial^2\varphi(z). $$
(17)

The corresponding central charge is

$$ c_{\xi}=\theta - 12\xi.\xi . $$
(18)

The OPE of T ξ (z) with a vertex operator e μ.φ(z) is

$$ T_{\xi}(z) e^{\mu.\varphi(w)}= \frac{\Delta e^{\mu.\varphi(w)}}{(z-w)^2}+ \frac{\partial e^{\mu.\varphi(w)}}{z-w},\quad \Delta = \frac{1}{2} \mu.\mu -\xi.\mu $$

A screening operator is, by definition, any expression ∮V(⋅), where V(z) is a field of dimension Δ=1 (and the contour integration is essentially equivalent to taking a residue “after the action of V(z) is evaluated”). For θ=2, any two exponentials e α.φ(z) and e β.φ(z) with noncollinear \(\alpha,\beta\in \mathbb {C}^{2}\) define screening operators with respect to the energy–momentum tensor

$$\begin{aligned} T(z) =& \frac{1}{2}\partial\varphi(z).\partial\varphi(z) \\ &{}- \frac{(2 + \alpha.\beta - \alpha.\alpha) \beta.\beta - 2 \alpha.\beta}{2 \delta^2} \partial^2\varphi_{\alpha}(z) \\ &{}- \frac{(2 + \alpha.\beta - \beta.\beta) \alpha.\alpha - 2 \alpha.\beta}{2 \delta^2} \partial^2\varphi_{\beta}(z), \end{aligned}$$

where ∂φ α (z)=α.∂φ(z) and ∂φ β (z)=β.∂φ(z), and δ 2=(α.α)(β.β)−(α.β)2. This gives formula (4) for the central charge.

Next, I show that the central charge of the θ-boson energy–momentum tensor that centralizers θ screenings \(\oint e^{\alpha_{i}.\varphi(z)}\), 1≤iθ, with linearly independent momenta is invariant under Weyl reflections (8) if Eqs. (7) hold.

Given the α i , 1≤iθ, the condition that all the exponentials \(e^{\alpha_{i}.\varphi(z)}\) have dimension 1 is expressed by the system of equations for ξ

$$ \frac{1}{2} \alpha_i.\alpha_i - \xi. \alpha_i = 1, \quad 1\leq i\leq\theta. $$

With ξ written as \(\xi=\sum_{j=1}^{\theta}x_{j} \alpha_{j}\), this becomes a system for the x j ,

$$ \frac{1}{2} \alpha_i.\alpha_i - \sum_{j=1}^{\theta}x_j \alpha_j.\alpha_i = 1,\quad 1\leq i\leq\theta, $$
(19)

uniquely solvable if the α i are linearly independent.

Under a Weyl groupoid operation \(\mathfrak{R}^{(k)}\) in (8), the scalar products change and the solution (x j ) also changes. The “old” and “new” central charges are

$$ c=\theta-12\sum_{\ell,j=1}^{\theta} x_{\ell} x_j\alpha_{\ell}.\alpha_j \quad\text{and}\quad \mathfrak{R}^{(k)}(c)= \theta-12\sum _{\ell,j=1}^{\theta}\tilde{x}_{\ell} \tilde{x}_{j} \mathfrak{R}^{(k)}(\alpha_{\ell}. \alpha_j), $$

where the \(\tilde{x}_{j}\) solve the system “\(\mathfrak{R}^{(k)}\)((19)).” With \(\tilde{x}_{j}=x_{j}+y_{j}\), this system becomes

$$\begin{aligned} &\frac{1}{2}\alpha_i.\alpha_i - a_{k,i}\alpha_i.\alpha_k +\frac{1}{2} a_{k,i}^2\alpha_k.\alpha_k \\ &\quad\quad{}- \sum_{j=1}^{\theta}(x_j+y_j) (\alpha_j.\alpha_i - a_{k,i} \alpha_j.\alpha_k- a_{k,j} \alpha_k.\alpha_i + a_{k,j} a_{k,i}\alpha_k. \alpha_k)\\ &\quad=1, \quad 1\leq i\leq\theta \end{aligned}$$

(for a chosen k). The claim is that this system of equations for the “deformation” of the original solution is solved by the ansatz y j =δ j,k y. To see this, substitute such y j and use (19) in the resulting equations, which then become

$$ a_{k,i} \biggl(\frac{1}{2}\alpha_k. \alpha_k( a_{k,i}+1)-\alpha_i. \alpha_k-1 \biggr) + \Biggl(y+\sum_{j=1}^{\theta}x_j a_{k,j} \Biggr) (\alpha_k.\alpha_i- a_{k,i}\alpha_k.\alpha_k) = 0, $$

where 1≤iθ. Remarkably, if (7) holds, then the above equations are indeed solved by

$$ y=1 - \frac{2}{\alpha_k.\alpha_k} - \sum_{j=1}^{\theta}x_j a_{k,j}. $$
(20)

It remains to find the new central charge. With \(\tilde{x}_{j} = x_{j} + \delta_{j,k}y\),

$$\begin{aligned} \sum_{\ell,j=1}^{\theta}\tilde{x}_{\ell} \tilde{x}_{j} \mathfrak{R}^{(k)}(\alpha_{\ell}. \alpha_j) =& \sum _{\ell,j=1}^{\theta} x_{\ell} x_j(\alpha_{\ell}.\alpha_j - 2 a_{k,\ell} \alpha_j.\alpha_k + a_{k,l} a_{k,j} \alpha_k.\alpha_k) \\ &{}+ 2 \sum_{j=1}^{\theta} y x_j( a_{k,j}\alpha_k.\alpha_k - \alpha_k.\alpha_j) + y^2 \alpha_k.\alpha_k \end{aligned}$$

and yet another use of (19) shows that this is

$$ {}=\sum_{\ell,j=1}^{\theta} x_{\ell} x_j\alpha_{\ell}.\alpha_j + \Biggl(y + \sum _{j=1}^{\theta}x_j a_{k,j} \Biggr) \Biggl(y \alpha_k.\alpha_k + 2 - \alpha_k.\alpha_k + \sum_{\ell=1}^{\theta} x_{\ell} a_{k,\ell}\alpha_k.\alpha_k \Biggr), $$

where the last factor vanishes by virtue of (20). The central charge is invariant.

Appendix B: W 3 Logarithmic Octuplet Algebras

With the two screenings as in case 2.1 (the “regular” solution there, with central charge (9) and the W(z) field (10)), I propose a W 3 counterpart of the (1,p) algebra [2831] by closely following the constructions in [18].

An octuplet of primary fields is generated from the field e γ.φ(z) with \(\gamma\in \mathbb {C}^{2}\) such that γ.α =p and γ.β =p, i.e., from the field

(which is in the kernel of the two screenings F α =∮e α.φ and F β =∮e β.φ). This is a Virasoro primary field of dimension Δ=3p−2, that is,

and, moreover, a W 3 primary: as is easy to verify, the modes of the dimension-3 field \(W(z)=\sum_{n\in \mathbb {Z}}W_{n}z^{-n-3}\) in (10) act on such that

Then the long screenings (12) generate the octuplet

Here, , , and so on, and ; the dashed arrows represent maps to the target field up to a nonzero overall factor (\(\frac{(-1)^{p}}{2}\)). All the fields in the diagram are W 3-algebra primaries, with the same Virasoro dimension. All fields below the top are of the form , where the momenta μ are immediately read off from the diagram as μ α =γα , μ αβ =μ βα =γα β =0, and so on, and the are differential polynomials in ∂φ α (z) and ∂φ β (z), of the orders , , , and .

Calculations in particular examples show the OPE

with nonzero coefficients (and no dimension-3 W(w) field), and the OPEs and that start very similarly. The adjoint-sℓ(3) nature of the octuplet manifests itself in the OPEs such as

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semikhatov, A.M. (2014). Virasoro Central Charges for Nichols Algebras. In: Bai, C., Fuchs, J., Huang, YZ., Kong, L., Runkel, I., Schweigert, C. (eds) Conformal Field Theories and Tensor Categories. Mathematical Lectures from Peking University. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39383-9_3

Download citation

Publish with us

Policies and ethics