Skip to main content

Euclidean vs. Graph Metric

  • Chapter
Erdős Centennial

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

The theory of sparse graph limits concerns itself with versions of local convergence and global convergence, see e.g. [44]. Informally, in local convergence we look at a large neighborhood around a random uniformly chosen vertex in a graph and in global convergence we observe the whole graph from afar. In this note rather than surveying the general theory we will consider some concrete examples and problems of global and local convergence, with a geometric viewpoint. We will discuss how well large graphs approximate continuous spaces such as the Euclidean space. Or how properties of Euclidean space such as scale invariance and rotational invariance can appear in large graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Aldous and R. Lyons, Processes on unimodular random networks, Electron. J. Prob. paper 54, pages 1454–1508 (2007).

    Google Scholar 

  2. O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geometric And Functional Analysis 13 935–974 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Angel and O. Schramm, Uniform infinite planar triangulations, Comm. Math. Phys. 241, 191–213 (2003).

    MATH  MathSciNet  Google Scholar 

  4. L. Babai and M. Szegedy, Local expansion of symmetrical graphs, Combinatorics, Probability and Computing (1992), 1: 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Benjamini and N. Curien, On limits of graphs sphere packed in Euclidean space and applications. European J. Comb. 32 975–984, (2011).

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Benjamini and N. Curien, Ergodic theory on stationary random graphs, Electron. J. Probab. 17 20 pp. (2012).

    Google Scholar 

  7. I. Benjamini and N. Curien, Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points, (2012) GAFA to appear.

    Google Scholar 

  8. I. Benjamini, G. Kalai and O. Schramm, First passage percolation has sublinear distance variance, Ann. of Prob. 31 1970–1978 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Benjamini and P. Papasoglu, Growth and isoperimetric profile of planar graphs, Proc. Amer. Math. Soc. 139 (2011), no. 11, 4105–4111.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Benjamini and O. Schramm, Recurrence of Distributional Limits of Finite Planar Graphs, Electron. J. Probab. 6 13 pp. (2001).

    Google Scholar 

  11. I. Benjamini, O. Schramm and A. Timar, On the separation profile of infinite graphs, Group, Geometry and Dynamics. 6 pp. 639–658 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Biskup, On the scaling of the chemical distance in long-range percolation models, Ann. Prob. 32 2938–2977 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995) 103–107.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2001).

    Google Scholar 

  15. P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Prob. Theor. and Rel. Fields 128, 161–212 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Dekking and B. Host, Limit distributions for minimal displacement of branching random walks, Probab. Theory Relat. Fields 90, 403–426 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invensiones Mathematicae 185, 333–393 (2011).

    MATH  MathSciNet  Google Scholar 

  18. O. Häggström and R. Pemantle, First passage percolation and a model for competing spatial growth, Jour. Appl. Proba. 35 683–692 (1998).

    Article  MATH  Google Scholar 

  19. Z-X. He and O. Schramm, Hyperbolic and parabolic packings, Jour. Discrete and Computational Geometry 14 123–149, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Hoffman, Geodesics in first passage percolation, Ann. Appl. Prob. 18, 1944–1969 (2008).

    Article  MATH  Google Scholar 

  21. D. Howard and C. Newman, Euclidean models of first-passage percolation, Probab. Theory Related Fields 108, 153–170 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Gamburd and E. Makover, On the genus of a random Riemann surface, Contemp. Math.. 311 (2002), 133–140.

    Article  MathSciNet  Google Scholar 

  23. O. Gurel-Gurevich and A. Nachmias, Recurrence of planar graph limits, Annals of Math. To appear (2012).

    Google Scholar 

  24. B. Hambly and J. Jordan, A random hierarchical lattice: the series-parallel graph and its properties, Adv. Appl. Prob. 36, 824–838 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Kaibel and G. Ziegler, Counting lattice triangulations, London Math. Society Lecture Notes Series, 307, 277–307 (2003).

    MathSciNet  Google Scholar 

  26. H. Kesten, The critical probability of bond percolation on the square lattice equals , Comm. Math. Phys. 74 (1980), no. 1, 41–59.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Kesten, Aspects of first passage percolation, Lecture Notes in Math, Springer (1986).

    Google Scholar 

  28. J. Komlos, P. Major and G. Tusnady, An approximation of partial sums of independent RV’-s, and the sample DF. I, Prob. Theor. and Rel. Fields. 32, (1975), 111–131.

    MATH  MathSciNet  Google Scholar 

  29. M. Krikun, A uniformly distributed infinite planar triangulation and a related branching process, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307 (Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10):141–174, 282-283 (2004).

    Google Scholar 

  30. J. F. Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math., 169(3):621–670 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Lovász, Large networks, graph homomorphisms and graph limits, Amer. Math. Soc. In preparation (2012).

    Google Scholar 

  32. G. Miller, S. Teng, W. Thurston and S. Vavasis, Geometric separators for finiteelement meshes, SIAM J. Sci. Comput. 19 (1998), no. 2, 364–386 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  33. V. Nekrashevych and G. Pete, Scale-invariant groups, Groups, Geometry and Dynamics 5 (2011), 139–167.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dyn. Syst. 3, 415–445 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Pansu, Large scale conformal maps, Preprint (2012).

    Google Scholar 

  36. C. Radin, The Pinwheel tilings of the plane, Annals of Mathematics 139 (3): pp.661–702 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  37. G. Schaeffer, Conjugaison d’arbres et cartes combinatoires aléatoires, phd thesis, (1998).

    Google Scholar 

  38. N. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge University Press (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Benjamini, I. (2013). Euclidean vs. Graph Metric. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_2

Download citation

Publish with us

Policies and ethics