Skip to main content

Small Stretch Pairwise Spanners

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called an (α,β) spanner of G if for each (u,v) ∈ V ×V, the u-v distance in H is at most α·δ G (u,v) + β. The following is a natural relaxation of the above problem: we care for only certain distances, these are captured by the set \(\mathcal{P} \subseteq V \times V\) and the problem is to construct a sparse subgraph H, called an (α,β) \(\mathcal{P}\)-spanner, where for every \((u,v) \in \mathcal{P}\), the u-v distance in H is at most α·δ G (u,v) + β.

We show how to construct a (1,2) \(\mathcal{P}\)-spanner of size \(\tilde{O}(n\cdot|\mathcal{P}|^{1/3})\) and a (1,2) (S×V)-spanner of size \(\tilde{O}(n\cdot(n|S|)^{1/4})\). A D-spanner is a \(\mathcal{P}\)-spanner when \(\mathcal{P}\) is described implicitly via a distance threshold D as \(\mathcal{P} = \{(u,v): \delta(u,v) \ge D\}\). For a given D ∈ ℤ + , we show how to construct a (1,4) D-spanner of size \(\tilde{O}(n^{3/2}/{D^{1/4}})\) and for D ≥ 2, a (1,4logD) D-spanner of size \(\tilde{O}(n^{3/2}/{\sqrt{D}})\).

This work was supported by IMPECS (Indo-German Max Planck Center for Computer Science).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of sparse neighborhood covers. SIAM Journal on Computing 28(1), 263–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM Journal on Discrete Math 5(2), 151–162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baswana, S., Kavitha, T.: Faster algorithms for all-pairs approximate shortest paths in undirected graphs. SIAM Journal on Computing 39(7), 2865–2896 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive Spanners and (α,β)-Spanners. ACM Transactions on Algorithms 7(1), 5 (2010)

    Article  MathSciNet  Google Scholar 

  5. Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-spanner of O(n 1 + 1/k) size in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in O(n 2logn) time. In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 271–280 (2004)

    Google Scholar 

  7. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse Distance Preservers and Additive Spanners. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–423 (2003)

    Google Scholar 

  8. Chechik, S.: New Additive Spanners. In: Proc. 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 498–512 (2013)

    Google Scholar 

  9. Cohen, E.: Fast algorithms for constructing t-spanners and paths of stretch t. In: Proc. 34th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 648–658 (1993)

    Google Scholar 

  10. Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise distance preservers. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 660–669 (2005)

    Google Scholar 

  11. Cowen, L.J.: Compact routing with minimum stretch. Journal of Algorithms 28, 170–183 (2001)

    Article  MathSciNet  Google Scholar 

  12. Cowen, L.J., Wagner, C.G.: Compact roundtrip routing in directed networks. Journal of Algorithms 50(1), 79–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cygan, M., Grandoni, F., Kavitha, T.: On Pairwise Spanners. In: Proc. 30th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 209–220 (2013)

    Google Scholar 

  14. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on Computing 29(5), 1740–1759 (2004)

    Article  MathSciNet  Google Scholar 

  15. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  16. Elkin, M., Peleg, D.: (1 + ε, β)-spanner construction for general graphs. SIAM Journal on Computing 33(3), 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gavoille, C., Peleg, D., Perennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 210–219 (2001)

    Google Scholar 

  18. Halperin, S., Zwick, U.: Unpublished result (1996)

    Google Scholar 

  19. Peleg, D.: Proximity-preserving labeling schemes. Journal of Graph Theory 33(3), 167–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peleg, D., Schaffer, A.A.: Graph Spanners. Journal of Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18, 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pettie, S.: Low Distortion Spanners. ACM Transactions on Algorithms 6(1) (2009)

    Google Scholar 

  23. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Thorup, M., Zwick, U.: Approximate Distance Oracles. Journal of the ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 802–809 (2006)

    Google Scholar 

  27. Woodruff, D.P.: Additive Spanners in Nearly Quadratic Time. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 463–474. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kavitha, T., Varma, N.M. (2013). Small Stretch Pairwise Spanners. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics