Skip to main content

Information Theoretic Pairwise Clustering

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7953))

Included in the following conference series:

Abstract

In this paper we develop an information-theoretic approach for pairwise clustering. The Laplacian of the pairwise similarity matrix can be used to define a Markov random walk on the data points. This view forms a probabilistic interpretation of spectral clustering methods. We utilize this probabilistic model to define a novel clustering cost function that is based on maximizing the mutual information between consecutively visited clusters of states of the Markov chain defined by the graph Laplacian matrix. The algorithm complexity is linear on sparse graphs. The improved performance and the reduced computational complexity of the proposed algorithm are demonstrated on several standard datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung, F.: Spectral graph theory. CBMS Regional Conference Series in Mathematics, vol. 92 (1997)

    Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience (1991)

    Google Scholar 

  3. Dhillon, I., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors: A multilevel approach. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), pp. 1944–1957 (2007)

    Google Scholar 

  4. Dhillon, I., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research 3, 1265–1287 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: ACM SIGKDD (2003)

    Google Scholar 

  6. Dubnov, S., El-Yaniv, R., Gdalyahu, Y., Schneidman, E., Tishby, N., Yona, G.: A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles. Macine Learning 47(1), 35–61 (2002)

    Article  MATH  Google Scholar 

  7. Goldberger, J., Erez, K., Abeles, M.: A Markov clustering method for analyzing movement trajectories. In: IEEE Machine Learning for Signal Processing Workshop, MLSP (2007)

    Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2001)

    Google Scholar 

  9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Scientific Computing, 359–392 (1999)

    Google Scholar 

  10. Lin, F., Cohen, W.: Power iteration clustering. In: Int. Conf. on Machine Learning (2010)

    Google Scholar 

  11. Manning, C., Raghavan, P., Schutze, H.: Introduction to information retrieval. Cambridge University Press (2008)

    Google Scholar 

  12. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: AISTATS (2001)

    Google Scholar 

  13. Mitchell, T.: Machine learning. McGraw Hill (1997)

    Google Scholar 

  14. Ng, A.Y., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14 (2002)

    Google Scholar 

  15. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. pattern Anal. Machine Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  17. Slonim, N., Friedman, N., Tishby, N.: Unsupervised document classification using sequential information maximization. In: Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (2002)

    Google Scholar 

  18. Slonim, N., Tishby, N.: Document clustering using word clusters via the information bottleneck method. In: Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (2000)

    Google Scholar 

  19. Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: Allerton Conf. on Communication, Control and Computing (1999)

    Google Scholar 

  20. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing, 395–416 (2007)

    Google Scholar 

  21. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Int’l Conf. Computer Vision (2003)

    Google Scholar 

  22. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems 17 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, A., Goldberger, J. (2013). Information Theoretic Pairwise Clustering. In: Hancock, E., Pelillo, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2013. Lecture Notes in Computer Science, vol 7953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39140-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39140-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39139-2

  • Online ISBN: 978-3-642-39140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics