Skip to main content

The Phylum Spirochaetaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Spirochaetaceae is a family of spirochetes that cause syphilis, Lyme disease, epidemic and endemic relapsing fever, leptospirosis, swine dysentery, and periodontal disease. The spirochetes are presently classified as members of class Spirochaetes in the order Spirochaetales and are divided into three major phylogenetic groupings or families. The first family, Spirochaetaceae, contains species in the genera Borrelia, Brevinema, Cristispira, Spirochaeta, Spironema, and Treponema. The second family, Brachyspiraceae, contains the genus Brachyspira (Serpulina). The third family, Leptospiraceae, contains species of the genera Leptonema and Leptospira. One of the unique features of spirochetes is motility mediated by axial flagella with a rapid drifting rotation. The DNA of the Spirochaeta species contains guanine (G) + cytosine (C) ranging from 51 % to 65 mol %. The presence of several linear plasmids seems to cause the segmentation of Borrelia DNA into several linear pieces. This has led to the suggestion that the relatively small linear chromosome and the linear plasmids actually are minichromosomes. Various molecular and immunological detection methods have been developed for detection and identification of spirochetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguero-Rosenfeld ME, Wang G, Schwartz I, Wormser GP (2005) Diagnosis of Lyme borreliosis. Clin Microbiol Rev 18(3):484–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed N, Devi SM, de Valverde ML, Vijayachari P, Machang’u RS, Ellis WA, Hartskeerl RA (2006) Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann Clin Microbiol Antimicrob 5:28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ahmed A, Engelberts MF, Boer KR, Ahmed N, Hartskeerl RA (2009) Development and validation of a real-time PCR for detection of pathogenic Leptospira species in clinical materials. PLoS One 18:7093–7101

    Article  CAS  Google Scholar 

  • Atyeo RF, Oxberry SL, Hampson DJ (1996) Pulsed-field gel electrophoresis for sub-specific differentiation of Serpulina pilosicoli (formerly “Anguillina coli”). FEMS Microbiol Lett 141:77–81

    Article  CAS  PubMed  Google Scholar 

  • Babady NE, Sloan LM, Vetter EA, Patel R, Binnicker MJ (2008) Percent positive rate of Lyme real-time polymerase chain reaction in blood, cerebrospinal fluid, synovial fluid, and tissue. Diagn Microbiol Infect Dis 62(4):464–466

    Article  CAS  PubMed  Google Scholar 

  • Belfaiza J, Postic D, Bellenger E, Baranton G, Saint Girons I (1993) Genomic fingerprinting of Borrelia burgdorferi sensu lato by pulsed-field gel electrophoresis. J Clin Microbiol 31:2873–2877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop CJ, Aanensen DM, Jordan GE, Kilian M, Hanage WP, Spratt BG (2009) Assigning strains to bacterial species via the internet. BMC Biol 7:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Bailey MS, Holden MT, Zhang C, Jiang X, Koizumi N, Taylor K, Galloway R, Hoffmaster AR, Craig S, Smythe LD, Hartskeerl RA, Day NP, Chantratita N, Feil EJ, Aanensen DM, Spratt BG, Peacock SJ (2013) A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species. PLoS Negl Trop Dis 7(1):e1954

    Article  PubMed Central  PubMed  Google Scholar 

  • Bourhy P, Bremont S, Zinini F, Giry C, Picardeau M (2011) Comparison of real-time PCR assays for detection of pathogenic Leptospira spp. in blood and identification of variations in target sequences. J Clin Microbiol 49(6):2154–2160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brisson D, Dykhuizen DE (2004) ospC diversity in Borrelia burgdorferi. Genetics 168:713–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG (2004) Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150:1741–1755

    Article  CAS  PubMed  Google Scholar 

  • Busch U, Hizo-Teufel C, Boehmer R, Fingerle V, Nitschko H, Wilske B, Preac-Mursic V (1996a) Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. afzelii, and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR. J Clin Microbiol 34:1072–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Busch U, Hizo-Teufel C, Bohmer R, Fingerle V, Rossler D, Wilske B, Preac-Mursic V (1996b) Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scand J Infect Dis 28:583–589

    Article  CAS  PubMed  Google Scholar 

  • Cabello FC, Sartakova ML, Dobrikova EY (2001) Genetic manipulation of spirochetes–light at the end of the tunnel. Trends Microbiol 9(6):245–248

    Article  CAS  PubMed  Google Scholar 

  • Cameron CE, Zuerner RL, Raverty S, Colegrove KM, Norman SA, Lambourn DM, Jeffrie SJ, Gulland FM (2008) Detection of pathogenic Leptospira bacteria in pinniped populations via PCR and identification of a source of transmission for zoonotic leptospirosis in the marine environment. J Clin Microbiol 46:1728–1733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caro-Quintero A, Ritalahti KM, Cusick KD, Löffler FE, Konstantinidis KT (2012) The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology. MBio 3(3). pii: e00025-12

    Google Scholar 

  • Casjens S, Huang WM (1993) Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol Microbiol 8:967–980

    Article  CAS  PubMed  Google Scholar 

  • Casjens S, Delange M, Ley HL III, Rosa P, Huang WM (1995) Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J Bacteriol 177:2769–2780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan K, Casjens S, Parveen N (2012) Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 80(4):1519–1529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu CY, Jiang BG, Liu W, Zhao QM, Wu XM, Zhang PH, Zhan L, Yang H, Cao WC (2008) Presence of pathogenic Borrelia burgdorferi sensu lato in ticks and rodents in Zhejiang, south-east China. J Med Microbiol 57(Pt 8):980–985

    Google Scholar 

  • Ciceroni L, Ciarrocchi S, Ciervo A, Petrucca A, Pinto A, Calderaro A, Viani I, Galati L et al (2002) Differentiation of leptospires of the serogroup Pomona by monoclonal antibodies, pulsed-field gel electrophoresis and arbitrarily primed polymerase chain reaction. Res Microbiol 153:37–44

    Article  CAS  PubMed  Google Scholar 

  • Crowder CD, Matthews HE, Schutzer S, Rounds MA, Luft BJ, Nolte O, Campbell SR, Phillipson CA, Li F, Sampath R, Ecker DJ, Eshoo MW (2010) Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PLoS One 5:e10650

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cullen PA, Haake DA, Adler B (2004) Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev 28(3):291–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson BE, MacDougall J, Saint Girons I (1992) Physical map of the linear chromosome of the bacterium Borrelia burgdorferi 212, a causative agent of Lyme disease, and localization of rRNA genes. J Bacteriol 174:3766–3774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferdin J, Cerar T, Strle F, Ruzic-Sabljic E (2010) Evaluation of real-time PCR targeting hbb gene for Borrelia species identification. J Microbiol Methods 82(2):115–119

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClelland M, Nakao M (1995) Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol 45:804–810

    Article  CAS  PubMed  Google Scholar 

  • Galloway RL, Levett PN (2008) Evaluation of a modified pulsed-field gel electrophoresis approach for the identification of Leptospira serovars. Am J Trop Med Hyg 78:628–632

    CAS  PubMed  Google Scholar 

  • Gayet-Ageron A, Ninet B, Toutous-Trellu L et al (2009) Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect 85(4):264–269

    Article  CAS  PubMed  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: reevaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  PubMed  Google Scholar 

  • Gravekamp C, Van de Kemp H, Franzen M, Carrington D, Schoone GJ, Van Eys GJ, Everard CO, Hartskeerl RA, Terpstra WJ (1993) Detection of seven species of pathogenic leptospires by PCR using two sets of primers. J Gen Microbiol 139:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Hanage WP, Kaijalainen T, Herva E, Saukkoriipi A, Syrjanen R, Spratt BG (2005) Using multilocus sequence data to define the pneumococcus. J Bacteriol 187:6223–6230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361:1917–1927

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardham JM, Rosey EL (2000) Antibiotic selective markers and spirochete genetics. J Mol Microbiol Biotechnol 2(4):425–432

    CAS  PubMed  Google Scholar 

  • Herrmann JL, Bellenger E, Perolat P, Baranton G, Saint Girons I (1992) Pulsed-field gel electrophoresis of NotI digests of leptospiral DNA: a new rapid method of serovar identification. J Clin Microbiol 30:1696–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heymans R, van der Helm JJ, de Vries HJ, Fennema HS, Coutinho RA, Bruisten SM (2010) Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol 48(2):497–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour A, Kurtenbach K, Fish D (2009) Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci USA 106:15013–15008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Humphrey PT, Caporale DA, Brisson D (2010) Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes scapularis. Evolution 64(9):2653–2663

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyde FW, Johnson RC (1984) Genetic relationship of Lyme disease spirochetes to Borrelia, Treponema, and Leptospira spp. J Clin Microbiol 20(2):151–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivacic L, Reed KD, Mitchell PD, Ghebranious N (2007) A LightCycler TaqMan assay for detection of Borrelia burgdorferi sensu lato in clinical samples. Diagn Microbiol Infect Dis 57(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Karami A (2012) Molecular biology of Lyme disease (eBook). InTech Publication, Rijeka. http://www.intechopen.com/books/lyme-disease

  • Karami A, Hindeersson P, Hoiby N, Morovvati S, Khalilpour A (2006) Linear and circular plasmids in skin and cerebrospinal fluid isolates of Borrelia burgdorferi agent of Lyme disease. Pak J Biol Sci 9(15):2787

    Article  CAS  Google Scholar 

  • Karami A, Hosseyni SM, Kiarudi Y (2007) Molecular characterization of Borrelia burgdorferi linear plasmids by DNA hybridization, PCR, two-dimensional gel electrophoresis, and electron microscopy. Turk J Biol 31(2):73

    CAS  Google Scholar 

  • Leschine SB, Canale-Parola E (1986) Rifampin-resistant RNA polymerase in spirochetes. FEMS Microbiol Lett 35(2–3):199–204

    Article  CAS  Google Scholar 

  • Leslie DE, Azzato F, Karapanagiotidis T, Leydon J, Fyfe J (2007) Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay’s performance by comparison with serological testing. J Clin Microbiol 45(1):93–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li C, Motaleb A, Sal M, Goldstein SF, Charon NW (2000) Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2(4):345–354

    CAS  PubMed  Google Scholar 

  • Li C, Wolgemuth CW, Marko M, Morgan DG, Charon NW (2008) Genetic analysis of spirochete flagellin proteins and their involvement in motility, filament assembly, and flagellar morphology. J Bacteriol 190(16):5607–5615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Wang D, Zhang C, Wei X, Tian K, Li X, Nie Y, Liu Y, Yao G, Zhou J, Tang G, Jiang X, Yan J (2013) Source tracking of human leptospirosis: serotyping and genotyping of Leptospira isolated from rodents in the epidemic area of Guizhou province, China. BMC Microbiol 13:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin X, Chen Y, Lu Y, Yan J, Yan J (2009) Application of a loop-mediated isothermal amplification method for the detection of pathogenic Leptospira. Diagn Microbiol Infect Dis 63(3):237–242

    Article  CAS  PubMed  Google Scholar 

  • Liveris D, Gazumyan A, Schwartz I (1995) Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 33:589–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lux R, Miller JN, Park NH, Shi W (2001) Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect Immun 69:6276–6283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Majed Z, Bellenger E, Postic D, Pourcel C, Baranton G, Picardeau M (2005) Identification of variable-number tandem-repeat loci in Leptospira interrogans sensu stricto. J Clin Microbiol 43:539–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA, Cornet M, Piesman J, Donaghy M, Bormane A, Hurn MA, Feil EJ, Fish D, Casjens S, Wormser GP, Schwartz I, Kurtenbach K (2008) MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci USA 105:8730–8735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, Bormane A, Vitorino L, Collares-Pereira M, Drancourt M, Kurtenbach K (2009) A new Borrelia species defined by multilocus sequence analysis of housekeeping genes [down-pointing small open triangle]. Appl Environ Microbiol 75(16):5410–5416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margos G, Hojgaard A, Lane RS, Cornet M, Fingerle V, Rudenko N, Ogden N, Aanensen DM, Fish D, Piesman J (2010) Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii. Ticks Tick Borne Dis 1:151–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Margos G, Vollmer AS, Ogden HN, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11:1545–1563

    Article  PubMed Central  PubMed  Google Scholar 

  • Mathiesen DA, Oliver JH Jr, Kolbert CP, Tullson ED, Johnson BJ, Campbell GL, Mitchell PD, Reed KD, Telford SR, Anderson JF, Lane RS, Persing DH (1997) Genetic heterogeneity of Borrelia burgdorferi in the United States. J Infect Dis 175:98–107

    Article  CAS  PubMed  Google Scholar 

  • Merien F, Portnoi D, Bourhy P, Charavay F, Berlioz-Arthaud A, Baranton G (2005) A rapid and quantitative method for the detection of Leptospira species in human leptospirosis. FEMS Microbiol Lett 249:139–147

    Article  CAS  PubMed  Google Scholar 

  • Miao RM, Fieldsteel AH (1980) Genetic relationship between Treponema pallidum and Treponema pertenue, two noncultivable human pathogens. J Bacteriol 141:427–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miao RM, Fieldsteel AH, Harris DL (1978) Genetics of Treponema: characterization of Treponema hyodysenteriae and its relationship to Treponema pallidum. Infect Immun 22:736–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morey RE, Galloway RL, Bragg SL, Steigerwalt AG, Mayer LW, Levett PN (2006) Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol 44:3510–3516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naigowit P, Charoenchai S, Biaklang M, Seena U, Wangroongsarb P, Sawanpanyalert P, Warachit P (2007) Identification of clinical isolates of Leptospira spp. by pulsed field gel-electrophoresis and microscopic agglutination test. Southeast Asian J Trop Med Public Health 38:97–103

    PubMed  Google Scholar 

  • Ogden NH, Bouchard C, Kurtenbach K, Margos G, Lindsay LR, Trudel L, Nguon S, Milord F (2010) Active and passive surveillance and phylogenetic analysis of Borrelia burgdorferi elucidate the process of Lyme disease risk emergence in Canada. Environ Health Perspect 118(7):909–914

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogden NH, Margos G, Aanensen DM, Drebot MA, Feil EJ, Hanincová K, Schwartz I, Tyler S, Lindsay LR (2011) Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected during surveillance in Canada. Appl Environ Microbiol 77(10):3244–3254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ojaimi C, Davidson BE, Saint Girons I, Old IG (1994) Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of the Lyme disease spirochaetes Borrelia burgdorferi, B. garinii and B. afzelii. Microbiology 140:2931–2940

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Paster BJ, Dewhirst FE (2000) Taxonomy of spirochetes. Anaerobe 6:39–57

    Article  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE (2000) Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2(4):341–344

    CAS  PubMed  Google Scholar 

  • Paster BJ, Dewhirst FE, Weisburg WG, Tordoff LA, Fraser GJ, Hespell RB, Stanton TB, Zablen L, Mandelco L, Woese CR (1991) Phylogenetic analysis of the spirochetes. J Bacteriol 173:6101–6109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavia CS (1994) Overview of the pathogenic spirochetes. J Spirochetal Tick-Borne Dis 1(1):3–11

    Google Scholar 

  • Penn CW (1992) Recent advances in the taxonomy of the spirochaetes. In: Duerden BI, Brazier JS, Seddon SV, Wade WG (eds) Medical and environmental aspects of anaerobes. Wrightson Biomedical Publishing, Petersfield, pp 205–216

    Google Scholar 

  • Perolat P, Chappel RJ, Adler B, Baranton G, Bulach DM, Billinghurst ML, Letocart M, Merien F, Serrano MS (1998) Leptospira fainei sp. nov., isolated from pigs in Australia. Int J Syst Bacteriol 48:851–858

    Article  CAS  PubMed  Google Scholar 

  • Postic D, Baranton G (1994) Molecular fingerprinting and phylogeny of Borrelia burgdorferi sensu lato. In: Yanagihara Y, Masuzawa T (eds) Proceeding of the international symposium on Lyme disease in Japan. pp 133–147

    Google Scholar 

  • Postic D, Belfaiza J, Isogai E, Saint Girons I, Grimont PA, Baranton G (1993) A new genomic species in Borrelia burgdorferi sensu lato isolated from Japanese ticks. Res Microbiol 144:467–473

    Article  CAS  PubMed  Google Scholar 

  • Postic D, Riquelme-Sertour N, Merien F, Perolat P, Baranton G (2000) Interest of partial 16S rDNA gene sequences to resolve heterogeneities between Leptospira collections: application to L. meyeri. Res Microbiol 151:333–341

    Article  CAS  PubMed  Google Scholar 

  • Postic D, Garnier M, Baranton G (2007) Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates – description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int J Med Microbiol 297:263–271

    Article  CAS  PubMed  Google Scholar 

  • Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ (2004) Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci USA 101:14150–14155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Råsbäck T, Johansson KE, Jansson DS, Fellström C, Alikhani MY, La T, Dunn DS, Hampson DJ (2007) Development of a multilocus sequence typing scheme for intestinal spirochaetes within the genus Brachyspira. Microbiology 153(Pt 12):4074–4087

    Article  PubMed  CAS  Google Scholar 

  • Rayment SJ, Barrett SP, Livesley MA (1997) Sub-specific differentiation of intestinal spirochaete isolates by macrorestriction fragment profiling. Microbiology 143:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Richter D, Schlee DB, Allgöwer R, Matuschka FR (2004) Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl Environ Microbiol 70(11):6414–6419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter D, Postic D, Sertou N, Livey I, Matuschka FR, Baranton G (2006) Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int J Syst Evol Microbiol 56:873–881

    Article  CAS  PubMed  Google Scholar 

  • Rosey EL, Kennedy MJ, Yancey RJ Jr (1996) Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery. Infect Immun 64:4154–4162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr (2009a) Borrelia carolinensis sp. nov. – a new (14th) member of Borrelia burgdorferi sensu lato complex from the southeastern United States. J Clin Microbiol 47:134–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, Oliver JH (2009b) Delineation of a new species of the Borrelia burgdorferi sensu lato complex, Borrelia americana sp. nov. J Clin Microbiol 47:3875–3880

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudenko N, Golovchenko M, Hönig V, Mallátová N, Krbková L, Mikulásek P, Fedorova N, Belfiore NM, Grubhoffer L, Lane RS, Oliver JH Jr (2013) Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl Environ Microbiol 79(5):1444–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadziene A, Thomas DD, Bundoc VG, Holt SC, Barbour AG (1991) A flagella-less mutant of Borrelia burgdorferi. Structural, molecular, and in vitro functional characterization. J Clin Invest 88:82–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Liesack W (1993) Nucleic acids and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 151–194

    Google Scholar 

  • Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR (2009) Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis 64(3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Nakao M, Masuzawa T, Takada N, Yano Y, Ishiguro F, Fujita H, Ito T, Ma X, Oikawa Y, Kawamori F, Kumagai K, Mikami T, Hanaoka N, Ando S, Honda N, Taylor K, Tsubota T, Konnai S, Watanabe H, Ohnishi M, Kawabata H (2011) Multilocus sequence typing implicates rodents as the main reservoir host of human-pathogenic Borrelia garinii in Japan [down-pointing small open triangle]. J Clin Microbiol 49(5):2035–2039

    Article  PubMed Central  PubMed  Google Scholar 

  • Thaipadungpanit J, Wuthiekanun V, Chierakul W, Smythe LD, Petkanchanapong W, Limpaiboon R, Apiwatanaporn A, Slack AT, Suputtamongkol Y, White NJ, Feil EJ, Day NPJ, Peacock SJ (2007) A dominant clone of Leptospira interrogans associated with an outbreak of human leptospirosis in Thailand. PLoS Negl Trop Dis 1:e56

    Article  PubMed Central  PubMed  Google Scholar 

  • Thaipadungpanit J, Chierakul W, Wuthiekanun V et al (2011) Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and lipL32 genes for human leptospirosis in Thailand: a case–control study. PLoS One 24:16236–16242

    Article  CAS  Google Scholar 

  • Tipple C, Hanna MO, Hill S et al (2011) Getting the measure of syphilis: qPCR to better understand early infection. Sex Transm Infect 87(6):479–485

    Article  PubMed Central  PubMed  Google Scholar 

  • Trott DJ, Moeller MR, Zuerner RL, Goff JP, Waters WR, Alt DP, Walker RL, Wannemuehler MJ (2003) Characterization of Treponema phagedenis-like spirochetes isolated from papillomatous digital dermatitis lesions in dairy cattle. J Clin Microbiol 41(6):2522–2529

    Article  PubMed Central  PubMed  Google Scholar 

  • Urwin R, Maiden MC (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11:479–487

    Article  CAS  PubMed  Google Scholar 

  • Victoria B, Ahmed A, Zuerner RL, Ahmed N, Bulach DM, Quinteiro J, Hartskeerl RA (2008) Conservation of the S10-spc-alpha locus within otherwise highly plastic genomes provides phylogenetic insight into the genus Leptospira. PLoS One 3:e2752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vitorino LR, Margos G, Feil EJ, Collares-Pereira M, Zé-Zé L, Kurtenbach K (2008) Fine-scale phylogeographic structure of Borrelia lusitaniae revealed by multilocus sequence typing. PLoS One 3(12):e4002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson AD, Aanensen DM, James MC, Donaghy M, Randolph SE, Feil EJ, Kurtenbach K, Margos G (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Appl Environ Microbiol 13(1):184–192

    Article  CAS  Google Scholar 

  • Wang G, Schwartz I (2006) Spirochaetes. In: Encyclopedia of life sciences. Wiley, London, pp 1–7

    Google Scholar 

  • Yasuda PH, Steigerwalt AG, Sulzer KR, Kaufmann AF, Rogers F, Brenner DJ (1987) Deoxyribonucleic acid relatedness between serogroups and serovars in the family Leptospiraceae with proposals for seven new Leptospira species. Int J Syst Bacteriol 37:407–415

    Article  Google Scholar 

  • Zhang CC, Li XW, Cui ZG, Jiang XG (2009) Application of multiple-locus variable-number tandem repeat analysis (MLVA) for molecular typing of Leptospira interrogans serogroup Icterohaemorrhagiae. Chin J Microbiol Immunol 29(12):1144–1147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Karami, A., Sarshar, M., Ranjbar, R., Zanjani, R.S. (2014). The Phylum Spirochaetaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_156

Download citation

Publish with us

Policies and ethics