Skip to main content

Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease

  • Chapter
  • First Online:
Challenges and Opportunities for Respiratory Syncytial Virus Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 372))

Abstract

Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asenjo A, Rodriguez L, Villanueva N (2005) Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54. J Gen Virol 86(Pt 4):1109–1120. doi:10.1099/vir.0.80692-0 86/4/1109 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Asenjo A, Calvo E, Villanueva N (2006) Phosphorylation of human respiratory syncytial virus P protein at threonine 108 controls its interaction with the M2-1 protein in the viral RNA polymerase complex. J Gen Virol 87(Pt 12):3637–3642. doi:10.1099/vir.0.82165-0 87/12/3637 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Asenjo A, Gonzalez-Armas JC, Villanueva N (2008) Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating. Virology 380(1):26–33. doi:10.1016/j.virol.2008.06.045 S0042-6822(08)00427-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Atreya PL, Peeples ME, Collins PL (1998) The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. J Virol 72(2):1452–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ausar SF, Espina M, Brock J, Thyagarayapuran N, Repetto R, Khandke L, Middaugh CR (2007) High-throughput screening of stabilizers for respiratory syncytial virus: identification of stabilizers and their effects on the conformational thermostability of viral particles. Hum Vaccin 3(3):94–103. doi:10.1099/vir.0.82165-0 4149 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Belshe RB, Van Voris LP, Mufson MA (1982) Parenteral administration of live respiratory syncytial virus vaccine: results of a field trial. J Infect Dis 145(3):311–319

    Article  CAS  PubMed  Google Scholar 

  • Bermingham A, Collins PL (1999) The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc Natl Acad Sci U S A 96(20):11259–11264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhoj VG, Sun Q, Bhoj EJ, Somers C, Chen X, Torres JP, Mejias A, Gomez AM, Jafri H, Ramilo O, Chen ZJ (2008) MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc Natl Acad Sci U S A 105(37):14046–14051. doi:10.1073/pnas.0804717105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitko V, Shulyayeva O, Mazumder B, Musiyenko A, Ramaswamy M, Look DC, Barik S (2007) Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth. J Virol 81(4):1786–1795. doi:10.1128/JVI.01420-06 JVI.01420-06 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eleouet JF, Sizun C (2012) Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 8(5):e1002734. doi:10.1371/journal.ppat.1002734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock SC, Goldenring JR, Crowe JE Jr (2003) Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proc Natl Acad Sci U S A 100(25):15143–15148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock LG, Karron RA, Krempl CD, Collins PL, Buchholz UJ (2012) Evaluation of pneumonia virus of mice as a possible human pathogen. J Virol 86(10):5829–5843. doi:10.1128/JVI.00163-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown G, Rixon HW, Steel J, McDonald TP, Pitt AR, Graham S, Sugrue RJ (2005) Evidence for an association between heat shock protein 70 and the respiratory syncytial virus polymerase complex within lipid-raft membranes during virus infection. Virology 338(1):69–80. doi:10.1016/j.virol.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  • Buchholz UJ, Granzow H, Schuldt K, Whitehead SS, Murphy BR, Collins PL (2000) Chimeric bovine respiratory syncytial virus with glycoprotein gene substitutions from human respiratory syncytial virus (HRSV): Effects on host range and evaluation as a live-attenuated HRSV vaccine. J Virol 74(3):1187–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bukreyev A, Murphy BR, Collins PL (2000) Respiratory syncytial virus can tolerate an intergenic sequence of at least 160 nucleotides with little effect on transcription or replication in vitro and in vivo. J Virol 74(23):11017–11026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bukreyev A, Yang L, Fricke J, Cheng L, Ward JM, Murphy BR, Collins PL (2008) The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes. J Virol 82(24):12191–12204. doi:10.1128/JVI.01604-08 JVI.01604-08 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cartee TL, Wertz GW (2001) Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol 75(24):12188–12197. doi:10.1128/JVI.75.24.12188-12197.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cartee TL, Megaw AG, Oomens AG, Wertz GW (2003) Identification of a single amino acid change in the human respiratory syncytial virus L protein that affects transcriptional termination. J Virol 77(13):7352–7360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carter SD, Dent KC, Atkins E, Foster TL, Verow M, Gorny P, Harris M, Hiscox JA, Ranson NA, Griffin S, Barr JN (2010) Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Lett 584(13):2786–2790. doi:10.1016/j.febslet.2010.05.006 S0014-5793(10)00395-9 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castagne N, Barbier A, Bernard J, Rezaei H, Huet JC, Henry C, Da Costa B, Eleouet JF (2004) Biochemical characterization of the respiratory syncytial virus P-P and P-N protein complexes and localization of the P protein oligomerization domain. J Gen Virol 85(Pt 6):1643–1653

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Park H, Zhou H, Jin H (2005) Overexpression of the M2-2 protein of respiratory syncytial virus inhibits viral replication. J Virol 79(22):13943–13952. doi:10.1128/JVI.79.22.13943-13952.2005 79/22/13943 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chin J, Magoffin RL, Shearer LA, Schieble JH, Lennette EH (1969) Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am J Epidemiol 89(4):449–463

    CAS  PubMed  Google Scholar 

  • Collins PL, Wertz GW (1983) cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci U S A 80(11):3208–3212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins PL, Dickens LE, Buckler-White A, Olmsted RA, Spriggs MK, Camargo E, Coelingh KV (1986) Nucleotide sequences for the gene junctions of human respiratory syncytial virus reveal distinctive features of intergenic structure and gene order. Proc Natl Acad Sci U S A 83(13):4594–4598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins PL, Olmsted RA, Spriggs MK, Johnson PR, Buckler-White AJ (1987) Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus. Proc Natl Acad Sci U S A 84(15):5134–5138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92:11563–11567

    Article  CAS  PubMed  Google Scholar 

  • Collins PL, Hill MG, Cristina J, Grosfeld H (1996) Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A 93(1):81–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins PL, Camargo E, Hill MG (1999) Support plasmids and support proteins required for recovery of recombinant respiratory syncytial virus. Virology 259(2):251–255

    Article  CAS  PubMed  Google Scholar 

  • Connors M, Kulkarni AB, Firestone CY, Holmes KL, Morse HCd, Sotnikov AV, Murphy BR (1992) Pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of CD4 + T cells. J Virol 66(12):7444–7451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowton VM, Fearns R (2005) Evidence that the respiratory syncytial virus polymerase is recruited to nucleotides 1 to 11 at the 3′ end of the nucleocapsid and can scan to access internal signals. J Virol 79(17):11311–11322. doi:10.1128/JVI.79.17.11311-11322.2005 79/17/11311 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cowton VM, McGivern DR, Fearns R (2006) Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 87(Pt 7):1805–1821. doi:10.1099/vir.0.81786-0 87/7/1805 [pii]

    Article  CAS  PubMed  Google Scholar 

  • De Swart RL, Kuiken T, Timmerman HH, Amerongen Gv G, Van Den Hoogen BG, Vos HW, Neijens HJ, Andeweg AC, Osterhaus AD (2002) Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol 76(22):11561–11569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drexler JF, Corman VM, Muller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Rasche A, Yordanov S, Seebens A, Oppong S, Sarkodie YA, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stocker A, Carneiro AJ, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EK, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Kruger DH, Matthee S, Ulrich RG, Leroy EM, Drosten C (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3:796. doi:10.1038/ncomms1796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dupuy LC, Dobson S, Bitko V, Barik S (1999) Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. J Virol 73(10):8384–8392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF (2009) Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood 114(13):2649–2656. doi:10.1182/blood-2009-01-199497

    Article  CAS  PubMed  Google Scholar 

  • Eisenhut M (2006) Extrapulmonary manifestations of severe respiratory syncytial virus infection—a systematic review. Crit Care 10(4):R107. doi:10.1186/cc4984 cc4984 [pii]

    Article  PubMed  Google Scholar 

  • Eshaghi A, Duvvuri VR, Lai R, Nadarajah JT, Li A, Patel SN, Low DE, Gubbay JB (2012) Genetic variability of human respiratory syncytial virus a strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLoS ONE 7(3):e32807. doi:10.1371/journal.pone.0032807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fearns R, Collins PL (1999a) Model for polymerase access to the overlapped L gene of respiratory syncytial virus. J Virol 73(1):388–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fearns R, Collins PL (1999b) Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J Virol 73(7):5852–5864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fearns R, Peeples ME, Collins PL (1997) Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236(1):188–201

    Article  CAS  PubMed  Google Scholar 

  • Fearns R, Collins PL, Peeples ME (2000) Functional analysis of the genomic and antigenomic promoters of human respiratory syncytial virus. J Virol 74(13):6006–6014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fearns R, Peeples ME, Collins PL (2002) Mapping the transcription and replication promoters of respiratory syncytial virus. J Virol 76(4):1663–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fix J, Galloux M, Blondot ML, Eleouet JF (2011) The insertion of fluorescent proteins in a variable region of respiratory syncytial virus L polymerase results in fluorescent and functional enzymes but with reduced activities. Open Virol J 5:103–108. doi:10.2174/1874357901105010103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • J Fricke, LY Koo, CR Brown, PL Collins (2013) P38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol 87(3):1333–1347

    Google Scholar 

  • Fuentes S, Tran KC, Luthra P, Teng MN, He B (2007) Function of the respiratory syncytial virus small hydrophobic protein. J Virol 81(15):8361–8366. doi:10.1128/JVI.02717-06 JVI.02717-06 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fulginiti VA, Eller JJ, Sieber OF, Joyner JW, Minamitani M, Meiklejohn G (1969) Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am J Epidemiol 89(4):435–448

    CAS  PubMed  Google Scholar 

  • Galloux M, Tarus B, Blazevic I, Fix J, Duquerroy S, Eleouet JF (2012) Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein. J Virol 86(16):8375–8387. doi:10.1128/JVI.00058-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gan SW, Tan E, Lin X, Yu D, Wang J, Tan GM, Vararattanavech A, Yeo CY, Soon CH, Soong TW, Pervushin K, Torres J (2012) The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J Biol Chem 287(29):24671–24689. doi:10.1074/jbc.M111.332791

    Article  CAS  PubMed  Google Scholar 

  • Gershwin LJ, Schelegle ES, Gunther RA, Anderson ML, Woolums AR, Larochelle DR, Boyle GA, Friebertshauser KE, Singer RS (1998) A bovine model of vaccine enhanced respiratory syncytial virus pathophysiology [In Process Citation]. Vaccine 16(11–12):1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Ghildyal R, Ho A, Jans DA (2006) Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 30(5):692–705. doi:10.1111/j.1574-6976.2006.00025.x

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes L, Ruiz-Arguello MB, Garcia-Barreno B, Calder L, Lopez JA, Albar JP, Skehel JJ, Wiley DC, Melero JA (2001) Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98(17):9859–9864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould PS, Easton AJ (2007) Coupled translation of the second open reading frame of M2 mRNA is sequence dependent and differs significantly within the subfamily Pneumovirinae. J Virol 81(16):8488–8496. doi:10.1128/JVI.00457-07 JVI.00457-07 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham BS, Henderson GS, Tang YW, Lu X, Neuzil KM, Colley DG (1993) Priming immunization determines T helper cytokine mRNA expression patterns in lungs of mice challenged with respiratory syncytial virus. J Immunol 151(4):2032–2040

    CAS  PubMed  Google Scholar 

  • Grosfeld H, Hill MG, Collins PL (1995) RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol 69(9):5677–5686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groskreutz DJ, Babor EC, Monick MM, Varga SM, Hunninghake GW (2010) Respiratory syncytial virus limits alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) phosphorylation to maintain translation and viral replication. J Biol Chem 285(31):24023–24031. doi:10.1074/jbc.M109.077321 M109.077321 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hanley LL, McGivern DR, Teng MN, Djang R, Collins PL, Fearns R (2010) Roles of the respiratory syncytial virus trailer region: effects of mutations on genome production and stress granule formation. Virology 406:241–252. doi:10.1016/j.virol.2010.07.006 S0042-6822(10)00446-0 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy RW, Wertz GW (1998) The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J Virol 72(1):520–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy RW, Wertz GW (2000) The Cys(3)-His(1) motif of the respiratory syncytial virus M2-1 protein is essential for protein function. J Virol 74(13):5880–5885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmon SB, Wertz GW (2002) Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 300(2):304–315

    Article  CAS  PubMed  Google Scholar 

  • Harpen M, Barik T, Musiyenko A, Barik S (2009) Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis. J Virol 83(21):10869–10876. doi:10.1128/JVI.01271-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75(22):10730–10737. doi:10.1128/JVI.75.22.10730-10737.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson G, Murray J, Yeo RP (2002) Sorting of the respiratory syncytial virus matrix protein into detergent-resistant structures is dependent on cell-surface expression of the glycoproteins. Virology 300(2):244–254

    Article  CAS  PubMed  Google Scholar 

  • Hendricks DA, McIntosh K, Patterson JL (1988) Further characterization of the soluble form of the G glycoprotein of respiratory syncytial virus. J Virol 62(7):2228–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffree CE, Rixon HW, Brown G, Aitken J, Sugrue RJ (2003) Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology 306(2):254–267

    Article  CAS  PubMed  Google Scholar 

  • Johnson RA, Prince GA, Suffin SC, Horswood RL, Chanock RM (1982) Respiratory syncytial virus infection in cyclophosphamide-treated cotton rats. Infect Immun 37(1):369–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS (2007) The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol 20(1):108–119. doi:10.1038/modpathol.3800725 3800725 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Johnson TR, Johnson CN, Corbett KS, Edwards GC, Graham BS (2011) Primary human mDC1, mDC2, and pDC dendritic cells are differentially infected and activated by respiratory syncytial virus. PLoS ONE 6(1):e16458. doi:10.1371/journal.pone.0016458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TR, McLellan JS, Graham BS (2012) Respiratory syncytial virus glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2. J Virol 86(3):1339–1347. doi:10.1128/JVI.06096-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakuk TJ, Soike K, Brideau RJ, Zaya RM, Cole SL, Zhang JY, Roberts ED, Wells PA, Wathen MW (1993) A human respiratory syncytial virus (RSV) primate model of enhanced pulmonary pathology induced with a formalin-inactivated RSV vaccine but not a recombinant FG subunit vaccine. J Infect Dis 167(3):553–561

    Article  CAS  PubMed  Google Scholar 

  • Kalica AR, Wright PF, Hetrick FM, Chanock RM (1973) Electron microscopic studies of respiratory syncytial temperature-sensitive mutants. Arch Gesamte Virusforsch 41(3):248–258

    Article  CAS  PubMed  Google Scholar 

  • Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE (1969) An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89(4):405–421

    CAS  PubMed  Google Scholar 

  • Karron RA, Buonagurio DA, Georgiu AF, Whitehead SS, Adamus JE, Clements-Mann ML, Harris DO, Randolph VB, Udem SA, Murphy BR, Sidhu MS (1997a) Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci U S A 94(25):13961–13966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karron RA, Wright PF, Crowe JE Jr, Clements ML, Thompson J, Makhene M, Casey R, Murphy BR (1997b) Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus (RSV) vaccines in chimpanzees, adults, infants and children. J Infect Dis 176:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89(4):422–434

    CAS  PubMed  Google Scholar 

  • Kim HW, Leikin SL, Arrobio J, Brandt CD, Chanock RM, Parrott RH (1976) Cell-mediated immunity to respiratory syncytial virus induced by inactivated vaccine or by infection. Pediatr Res 10(1):75–78

    Article  CAS  PubMed  Google Scholar 

  • Kolokoltsov AA, Deniger D, Fleming EH, Roberts NJ Jr, Karpilow JM, Davey RA (2007) Small interfering RNA profiling reveals key role of clathrin-mediated endocytosis and early endosome formation for infection by respiratory syncytial virus. J Virol 81(14):7786–7800. doi:10.1128/JVI.02780-06 JVI.02780-06 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo L, Grosfeld H, Cristina J, Hill MG, Collins PL (1996) Effect of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol 70(10):6892–6901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo L, Fearns R, Collins PL (1997) Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol 71(7):4944–4953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwilas S, Liesman RM, Zhang L, Walsh E, Pickles RJ, Peeples ME (2009) Respiratory syncytial virus grown in Vero cells contains a truncated attachment protein that alters its infectivity and dependence on glycosaminoglycans. J Virol 83(20):10710–10718. doi:10.1128/JVI.00986-09 JVI.00986-09 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwilas AR, Yednak MA, Zhang L, Liesman R, Collins PL, Pickles RJ, Peeples ME (2010) Respiratory syncytial virus engineered to express CFTR corrects the bioelectric phenotype of human cystic fibrosis airway epithelium in vitro. J Virol 84:7770–7781. doi:10.1128/JVI.00346-10 JVI.00346-10 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langedijk JP, de Groot BL, Berendsen HJ, van Oirschot JT (1998) Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor. Virology 243(2):293–302

    Article  CAS  PubMed  Google Scholar 

  • Lennon RG, Isacson P, Rosales T, Elsea WR, Karzon DT, Winkelstein W Jr (1967) Skin tests with measles and poliomyelitis vaccines in recipients of inactivated measles virus vaccine. Delayed dermal hypersensitivity. JAMA 200(4):275–280

    Article  CAS  PubMed  Google Scholar 

  • Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R (2008) Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 82(17):8863–8870. doi:10.1128/JVI.00343-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lifland AW, Jung J, Alonas E, Zurla C, Crowe JE Jr, Santangelo PJ (2012) Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol 86(15):8245–8258. doi:10.1128/JVI.00215-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindquist ME, Lifland AW, Utley TJ, Santangelo PJ, Crowe JE Jr (2010) Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. J Virol 84(23):12274–12284. doi:10.1128/JVI.00260-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindquist ME, Mainou BA, Dermody TS, Crowe JE Jr (2011) Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. Virology 413(1):103–110. doi:10.1016/j.virol.2011.02.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liuzzi M, Mason SW, Cartier M, Lawetz C, McCollum RS, Dansereau N, Bolger G, Lapeyre N, Gaudette Y, Lagace L, Massariol MJ, Do F, Whitehead P, Lamarre L, Scouten E, Bordeleau J, Landry S, Rancourt J, Fazal G, Simoneau B (2005) Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. J Virol 79(20):13105–13115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llorente MT, Garcia-Barreno B, Calero M, Camafeita E, Lopez JA, Longhi S, Ferron F, Varela PF, Melero JA (2006) Structural analysis of the human respiratory syncytial virus phosphoprotein: characterization of an alpha-helical domain involved in oligomerization. J Gen Virol 87(Pt 1):159–169. doi:10.1099/vir.0.81430-0 87/1/159 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Ma CH, Brazas R, Jin H (2002) The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 76(21):10776–10784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsh R, Connor A, Gias E, Toms GL (2007) Increased susceptibility of human respiratory syncytial virus to neutralization by anti-fusion protein antibodies on adaptation to replication in cell culture. J Med Virol 79(6):829–837. doi:10.1002/jmv.20892

    Article  CAS  PubMed  Google Scholar 

  • McCurdy LH, Graham BS (2003) Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. J Virol 77(3):1747–1756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald TP, Pitt AR, Brown G, Rixon HW, Sugrue RJ (2004) Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology 330(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • McGivern DR, Collins PL, Fearns R (2005) Identification of internal sequences in the 3′ leader region of human respiratory syncytial virus that enhance transcription and confer replication processivity. J Virol 79(4):2449–2460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra R, Baviskar P, Duncan-Decocq RR, Patel D, Oomens AG (2012) The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 86(8):4432–4443. doi:10.1128/JVI.06744-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Money VA, McPhee HK, Mosely JA, Sanderson JM, Yeo RP (2009) Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction. Proc Natl Acad Sci U S A 106(11):4441–4446. doi:10.1073/pnas.0805740106 0805740106 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J, Hernandez JZ, Maskin B, Bugna J, Rubinstein C, Aguilar L, Dalurzo L, Libster R, Savy V, Baumeister E, Aguilar L, Cabral G, Font J, Solari L, Weller KP, Johnson J, Echavarria M, Edwards KM, Chappell JD, Crowe JE Jr, Williams JV, Melendi GA, Polack FP (2011) Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med 17(2):195–199. doi:10.1038/nm.2262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy BR, Walsh EE (1988) Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J Clin Microbiol 26(8):1595–1597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy BR, Prince GA, Walsh EE, Kim HW, Parrott RH, Hemming VG, Rodriguez WJ, Chanock RM (1986) Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J Clin Microbiol 24(2):197–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noton SL, Fearns R (2011) The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus. RNA 17(10):1895–1906. doi:10.1261/rna.2813411

    Article  CAS  PubMed  Google Scholar 

  • Noton SL, Cowton VM, Zack CR, McGivern DR, Fearns R (2010) Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion. Proc Natl Acad Sci U S A 107(22):10226–10231. doi:10.1073/pnas.0913065107 0913065107 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noton SL, Deflube LR, Tremaglio CZ, Fearns R (2012) The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. PLoS Path 8(10):e1002980

    Article  CAS  Google Scholar 

  • Peeples ME, Collins PL (2000) Mutations in the 5′ trailer region of a respiratory syncytial virus minigenome which limit RNA replication to one step. J Virol 74(1):146–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polack FP, Teng MN, Collins PL, Prince GA, Exner M, Regele H, Lirman DD, Rabold R, Hoffman SJ, Karp CL, Kleeberger SR, Wills-Karp M, Karron RA (2002) A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 196(6):859–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polack FP, Irusta PM, Hoffman SJ, Schiatti MP, Melendi GA, Delgado MF, Laham FR, Thumar B, Hendry RM, Melero JA, Karron RA, Collins PL, Kleeberger SR (2005) The cysteine-rich region of respiratory syncytial virus attachment protein inhibits innate immunity elicited by the virus and endotoxin. Proc Natl Acad Sci U S A 102(25):8996–9001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawling J, Cano O, Garcin D, Kolakofsky D, Melero JA (2011) Recombinant Sendai viruses expressing fusion proteins with two furin cleavage sites mimic the syncytial and receptor-independent infection properties of respiratory syncytial virus. J Virol 85(6):2771–2780. doi:10.1128/JVI.02065-10 JVI.02065-10 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezaee F, Gibson LF, Piktel D, Othumpangat S, Piedimonte G (2011) Respiratory syncytial virus infection in human bone marrow stromal cells. Am J Respir Cell Mol Biol 45(2):277–286. doi:10.1165/rcmb.2010-0121OC

    Article  CAS  PubMed  Google Scholar 

  • Roberts SR, Compans RW, Wertz GW (1995) Respiratory syncytial virus matures at the apical surfaces of polarized epithelial cells. J Virol 69(4):2667–2673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohwedder A, Keminer O, Forster J, Schneider K, Schneider E, Werchau H (1998) Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction. J Med Virol 54(4):320–327

    Article  CAS  PubMed  Google Scholar 

  • Sastre P, Oomens AG, Wertz GW (2007) The stability of human respiratory syncytial virus is enhanced by incorporation of the baculovirus GP64 protein. Vaccine 25(27):5025–5033. doi:10.1016/j.vaccine.2007.04.066 S0264-410X(07)00506-3 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spann KM, Collins PL, Teng MN (2003) Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77(20):11201–11211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spann KM, Tran KC, Collins PL (2005) Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines. J Virol 79(9):5353–5362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasakumar N, Ogra PL, Flanagan TD (1991) Characteristics of fusion of respiratory syncytial virus with HEp-2 cells as measured by R18 fluorescence dequenching assay. J Virol 65(8):4063–4069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surman SR, Collins PL, Murphy BR, Skiadopoulos MH (2007) An improved method for the recovery of recombinant paramyxovirus vaccine candidates suitable for use in human clinical trials. J Virol Methods 141(1):30–33. doi:10.1016/j.jviromet.2006.11.024 S0166-0934(06)00409-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Swedan S, Andrews J, Majumdar T, Musiyenko A, Barik S (2011) Multiple functional domains and complexes of the two nonstructural proteins of human respiratory syncytial virus contribute to interferon suppression and cellular location. J Virol 85(19):10090–10100. doi:10.1128/JVI.00413-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tawar RG, Duquerroy S, Vonrhein C, Varela PF, Damier-Piolle L, Castagne N, MacLellan K, Bedouelle H, Bricogne G, Bhella D, Eleouet JF, Rey FA (2009) Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326(5957):1279–1283. doi:10.1126/science.1177634 326/5957/1279 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG (2011) Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17:1132–1135

    Article  CAS  PubMed  Google Scholar 

  • Teng MN, Collins PL (1998) Identification of the respiratory syncytial virus proteins required for formation and passage of helper-dependent infectious particles. J Virol 72(7):5707–5716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teng MN, Collins PL (2002) The central conserved cystine noose of the attachment G protein of human respiratory syncytial virus is not required for efficient viral infection in vitro or in vivo. J Virol 76(12):6164–6171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teng MN, Whitehead SS, Bermingham A, Clair MS, Elkins WR, Murphy BR, Collins PL (2000) Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J Virol 74:9317–9321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran TL, Castagne N, Dubosclard V, Noinville S, Koch E, Moudjou M, Henry C, Bernard J, Yeo RP, Eleouet JF (2009) The respiratory syncytial virus M2-1 protein forms tetramers and interacts with RNA and P in a competitive manner. J Virol 83(13):6363–6374. doi:10.1128/JVI.00335-09 JVI.00335-09 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tripp RA, Jones LP, Haynes LM, Zheng H, Murphy PM, Anderson LJ (2001) CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2(8):732–738

    Article  CAS  PubMed  Google Scholar 

  • Utley TJ, Ducharme NA, Varthakavi V, Shepherd BE, Santangelo PJ, Lindquist ME, Goldenring JR, Crowe JE Jr (2008) Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc Natl Acad Sci U S A 105(29):10209–10214. doi:10.1073/pnas.0712144105 0712144105 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venter M, van Niekerk S, Rakgantso A, Bent N (2011) Identification of deletion mutant respiratory syncytial virus strains lacking most of the G protein in immunocompromised children with pneumonia in South Africa. J Virol 85(16):8453–8457. doi:10.1128/JVI.00674-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villenave R, Thavagnanam S, Sarlang S, Parker J, Douglas I, Skibinski G, Heaney LG, McKaigue JP, Coyle PV, Shields MD, Power UF (2012) In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc Natl Acad Sci U S A 109(13):5040–5045. doi:10.1073/pnas.1110203109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JT, McElvain LE, Whelan SP (2007) Vesicular stomatitis virus mRNA capping machinery requires specific cis-acting signals in the RNA. J Virol 81(20):11499–11506. doi:10.1128/JVI.01057-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehead SS, Juhasz K, Firestone CY, Collins PL, Murphy BR (1998) Recombinant respiratory syncytial virus (RSV) bearing a set of mutations from cold-passaged RSV is attenuated in chimpanzees. J Virol 72(5):4467–4471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehead SS, Bukreyev A, Teng MN, Firestone CY, St Claire M, Elkins WR, Collins PL, Murphy BR (1999) Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol 73(4):3438–3442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright PF, Ikizler MR, Gonzales RA, Carroll KN, Johnson JE, Werkhaven JA (2005) Growth of respiratory syncytial virus in primary epithelial cells from the human respiratory tract. J Virol 79(13):8651–8654. doi:10.1128/JVI.79.13.8651-8654.2005 79/13/8651 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright PF, Karron RA, Belshe RB, Shi JR, Randolph VB, Collins PL, O’Shea AF, Gruber WC, Murphy BR (2007) The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines. Vaccine 25(42):7372–7378. doi:10.1016/j.vaccine.2007.08.014 S0264-410X(07)00937-1 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo DS, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ (2009) Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 386(1):168–182. doi:10.1016/j.virol.2008.12.017 S0042-6822(08)00799-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ (2002) Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76(11):5654–5666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

PLC and BSG were funded by the NIAID Intramural Program. RF was funded by Boston University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collins, P.L., Fearns, R., Graham, B.S. (2013). Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease. In: Anderson, L., Graham, B. (eds) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38919-1_1

Download citation

Publish with us

Policies and ethics