Skip to main content

ODE Analysis of Biological Systems

  • Chapter
Formal Methods for Dynamical Systems (SFM 2013)

Abstract

This chapter aims to introduce some of the basics of modeling with ODEs in biology. We focus on computational, numerical techniques, rather than on symbolic ones. We restrict our attention to reaction-based models, where the biological interactions are mechanistically described in terms of reactions, reactants and products. We discuss how to build the ODE model associated to a reaction-based model; how to fit it to experimental data and estimate the quality of its fit; how to calculate its steady state(s), mass conservation relations, and its sensitivity coefficients. We apply some of these techniques to a model for the heat shock response in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abravaya, K., Phillips, B., Morimoto, R.I.: Attenuation of the heat shock response in hela cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes & Development 5(11), 2117–2127 (1991)

    Article  Google Scholar 

  2. Ali, M.M., Storey, C., Törn, A.: Application of stochastic global optimization algorithms to practical problems. Journal of Optimization Theory and Applications 95(3), 545–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azimi, S., Gratie, D.-E., Iancu, B., Petre, I.: Three approaches to quantitative model refinement with applications to the heat shock response. Technical report, Turku Centre for Computer Science (2013)

    Google Scholar 

  4. Baker, S.M., Schallau, K., Junker, B.H.: Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. Journal of Integrative Bioinformatics 7(3), 1–9 (2010)

    Google Scholar 

  5. Ballew, R.M., Sabelko, J., Gruebele, M.: Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proceedings of the National Academy of Sciences 93(12), 5759–5764 (1996)

    Article  Google Scholar 

  6. Boender, G., Romeijn, E.: Stochastic methods. In: Handbook of Global Optimization: nonconvex optimization and its applications, pp. 829–869. Kluwer Academic Publishers (1995)

    Google Scholar 

  7. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochemical Journal 19(2), 338–339 (1925)

    Article  Google Scholar 

  8. Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of erbb signaling pathways as revealed by a mass action model trained against dynamic data. Molecular Systems Biology 5, 239 (2009)

    Google Scholar 

  9. Ciobanu, G., Rozenberg, G. (eds.): Modeling in Molecular Biology. Springer (2004)

    Google Scholar 

  10. Czeizler, E., Rogojin, V., Petre, I.: The phosphorylation of the heat shock factor as a modulator for the heat shock response. IEEE-ACM Trans. Comp. Biol. Bioinf. 9(5), 1326–1337 (2012)

    Article  Google Scholar 

  11. Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill, New York (1988)

    MATH  Google Scholar 

  12. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007)

    Article  Google Scholar 

  13. Gessel, I.M., Stanley, R.P.: Algebraic enumeration. Handbook of Combinatorics 2, 1021–1061 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  15. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  16. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications 188(1), 404–425 (1992)

    Article  Google Scholar 

  17. Giordano, F., Weir, M., Fox, W.: A first course in mathematical modeling, 3rd edn. Thomson (2003)

    Google Scholar 

  18. Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proceedings of the National Academy of Sciences 78(11), 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

  19. Grossmann, I.E.: Global optimization in engineering design. Kluwer Academic Publishers (1996)

    Google Scholar 

  20. Guldberg, C.M., Waage, P.: Studies concerning affinity. CM Forhandlinger: Videnskabs-Selskabet i Christiana 35, 92–111 (1864)

    Google Scholar 

  21. Guldberg, C.M., Waage, P.: Etudes sur les affinités chimiques. Brøgger & Christie (1867)

    Google Scholar 

  22. Haldane, J.B.S.: Enzymes (1930, 1965)

    Google Scholar 

  23. Harmer, R.: Rule-based modelling and tunable resolution. EPTCS 9, 65–72 (2009)

    Article  Google Scholar 

  24. Heinrich, R., Schuster, S.: The regulation of cellular systems, vol. 416. Chapman & Hall, New York (1996)

    Book  MATH  Google Scholar 

  25. Heinrich, R., Schuster, S.: The modelling of metabolic systems. structure, control and optimality. Biosystems 47(1), 61–77 (1998)

    Article  Google Scholar 

  26. Helton, J.C., Davis, F.J.: Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Analysis 22(3), 591–622 (2002)

    Article  Google Scholar 

  27. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety 81, 23–69 (2003)

    Article  Google Scholar 

  28. Henri, V.: Lois générales de l’action des diastases. Librairie Scientifique A. Hermann (1903)

    Google Scholar 

  29. Hill, A.V.: A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation. The Journal of Physiology 40(3), 190–224 (1910)

    Article  Google Scholar 

  30. Holmberg, C.I., Tran, S.E.F., Eriksson, J.E., Sistonen, L.: Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences 27(12), 619–627 (2002)

    Article  Google Scholar 

  31. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi-a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  32. Hoppenstaedt, F.C., Peskin, C.S.: Modeling and Simulation in Medicine and the Life Sciences. Springer, New York (2002)

    Book  Google Scholar 

  33. Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  34. Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction models. International Journal of Unconventional Computing (page to appear, 2013)

    Google Scholar 

  35. Jones, C.M., Henry, E.R., Hu, Y., Chan, C.-K., Luck, S.D., Bhuyan, A., Roder, H., Hofrichter, J., Eaton, W.A.: Fast events in protein folding initiated by nanosecond laser photolysis. Proceedings of the National Academy of Sciences 90(24), 11860–11864 (1993)

    Article  Google Scholar 

  36. Kline, M.P., Morimoto, R.I.: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Molecular and Cellular Biology 17(4), 2107–2115 (1997)

    Article  Google Scholar 

  37. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems biology in practice: concepts, implementation and application. Wiley-Vch (2005)

    Google Scholar 

  38. Kühnel, M., Mayorga, L.S., Dandekar, T., Thakar, J., Schwarz, R., Anes, E., Griffiths, G., Reich, J.: Modelling phagosomal lipid networks that regulate actin assembly. BMC Systems Biology 2, 107–121 (2008)

    Article  Google Scholar 

  39. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Company (1925)

    Google Scholar 

  40. Malthus, T.R.: An Essay on the Principle of Population. 1798

    Google Scholar 

  41. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998)

    Article  Google Scholar 

  43. Menten, L., Michaelis, M.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  44. Miller, W.G., Alberty, R.A.: Kinetics of the reversible michaelis-menten mechanism and the applicability of the steady-state approximation. Journal of the American Chemical Society 80(19), 5146–5151 (1958)

    Article  Google Scholar 

  45. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Research 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  46. Murphy, E., Danos, V., Féret, J., Krivine, J., Harmer, R.: Rule-based modeling and model refinement. Elements of Computational Systems Biology, 83–114 (2009)

    Google Scholar 

  47. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)

    MATH  Google Scholar 

  48. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2002)

    Google Scholar 

  49. Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. Worth Publishers (2000)

    Google Scholar 

  50. Oberguggenberger, M., King, J., Schmelzer, B.: Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning 50, 680–693 (2009)

    Article  Google Scholar 

  51. Orth, J.D., Thiele, I., Palsson, B.: What is flux balance analysis? Nature Biotechnology 28, 245–248 (2010)

    Article  Google Scholar 

  52. Peper, A., Grimbergen, C.A., Spaan, J.A.E., Souren, J.E.M., Van Wijk, R.: A mathematical model of the hsp70 regulation in the cell. International Journal of Hyperthermia 14(1), 97–124 (1998)

    Article  Google Scholar 

  53. Petre, I., Mizera, A., Hyder, C.L., Meinander, A., Mikhailov, A., Morimoto, R.I., Sistonen, L., Eriksson, J.E., Back, R.-J.: A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing 10(1), 595–612 (2011)

    Article  MathSciNet  Google Scholar 

  54. Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annual Review of Physical Chemistry 34(1), 419–461 (1983)

    Article  Google Scholar 

  55. Rieger, T.R., Morimoto, R.I., Hatzimanikatis, V.: Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the hsp70 promoter. Biophysical Journal 88(3), 1646 (2005)

    Article  Google Scholar 

  56. Rubinow, S.I.: Introduction to Mathematical Biology. John Wiley, New York (1975)

    MATH  Google Scholar 

  57. Stewart, W.J.: Probability, Markov chains, queues, and simulation. The mathematical basis of performance modeling. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  58. Taubes, C.: Modeilng Differential Equations in Biology. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  59. Turányi, T.: Sensitivity analysis of complex kinetic systems. tools and applications. Journal of Mathematical Chemistry 5(3), 203–248 (1990)

    Article  MathSciNet  Google Scholar 

  60. Volterra, V.: Animal ecology. In: Chapman, R.N. (ed.), pp. 409–448. McGraw-Hill, New York (1926)

    Google Scholar 

  61. Wilkinson, D.J.: Stochastic modelling for systems biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series (2006)

    Google Scholar 

  62. Zi, Z.: Sensitivity analysis approaches applied to systems biology models. Systems Biology, IET 5(6), 336–346 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gratie, DE., Iancu, B., Petre, I. (2013). ODE Analysis of Biological Systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds) Formal Methods for Dynamical Systems. SFM 2013. Lecture Notes in Computer Science, vol 7938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38874-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38874-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38873-6

  • Online ISBN: 978-3-642-38874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics