Skip to main content

Emerging Perspectives in Stroke Rehabilitation

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation

Abstract

Poststroke characteristics vary significantly between patients and over time, necessitating the introduction of individualized therapy. To provide the appropriate therapy to a patient at the correct time, several theoretical considerations must be taken into account—from a clear delineation of rehabilitation goals to an understanding of how a certain therapy can influence the underlying neuroplasticity. With regard to the differences between upper and lower limb motor recovery, both domains have experienced a change in perspective on rehabilitation. In gait training, assist-as-needed rehabilitation paradigms have become more pertinent, allowing each patient to find his/her individual walking rhythm and style within healthy boundaries. With the introduction of robotics in upper limb training (with or without virtual reality games that are attached), the amount of training and feedback that is provided to a patient can be increased without a rise in cost. The emerging consensus is to consider the various motor therapies and pharmacological interventions as part of a single, large toolbox instead of separate entities, guiding us toward a more patient-therapist-tailored approach, which is demonstrating tremendous efficacy.

All authors equally contributed to the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah H, Tarry C, Datta R, Mittal G, Abderrahim M (2007) Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy. J Rehabil Res Dev 44(1):43–62

    Article  Google Scholar 

  • Alstermark B, Isa T (2012) Circuits for skilled reaching and grasping. Annu Rev Neurosci 35:559–578. doi:10.1146/annurev-neuro-062111-150527

    Article  Google Scholar 

  • Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19(12):2848–2864

    Article  Google Scholar 

  • Backus D, Winchester P, Tefertiller C (2010) Translating research into clinical practice: integrating robotics into neurorehabilitation for stroke survivors. Topics Stroke Rehabil 17(5):362–370

    Article  Google Scholar 

  • Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8

    Article  Google Scholar 

  • Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno J, Pons J, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 8(1):66

    Google Scholar 

  • Berkowitz A (2008) Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J Neurophysiol 99(6):2887–2901

    Article  Google Scholar 

  • Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31

    Article  Google Scholar 

  • Bobath B, Bobath K (1957) Control of motor function in the treatment of cerebral palsy. Physiotherapy 43:295–303

    Google Scholar 

  • Boddice G, Brauer S, Gustafsson L, Kenardy J, Hoffmann T (2010) Clinical Guidelines for Stroke Management. Melbourne, Australia: National Stroke Foundation. (Published 2012)

    Google Scholar 

  • Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A et al (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917

    Article  Google Scholar 

  • Burdea G, Coiffet P (2003) Virtual reality technology. Presence 12(6):663–664

    Google Scholar 

  • Carpaneto J, Raos V, Umiltà MA, Fogassi L, Murata A, Gallese V, Micera S, Zhang W, Johnston JA, Ross MA et al (2012) Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. J NeuroEng Rehabil 9(1):84

    Google Scholar 

  • Cauraugh JH, Summers JJ et al (2005) Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol 75(5):309–320

    Article  Google Scholar 

  • Cheron G, Duvinage M, De Saedeleer C, Castermans T, Bengoetxea A, Petieau M, Seetharaman K, Hoellinger T, Dan B, Dutoit T et al (2012) From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural plast

    Google Scholar 

  • Collantes I, Asín G, Moreno JC, Pons JL (2012) Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation. In: Proceedings of EMBC’12, pp 4855–4858

    Google Scholar 

  • Collantes I, Asín G, Moreno JC, Pons JL (2012) Analysis of the effect of two different feedbacks on the biomechanical patterns of stroke patients during robotic-assisted gait rehabilitation. In: ICNR’12 (accepted)

    Google Scholar 

  • Costa N, Caldwell G (2006) Control of a biomimetic “soft-actuated” 10dof lower body exoskeleton. In: Proceedings of BioRob’06, pp 495–501

    Google Scholar 

  • Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609. doi:10.1093/brain/awr039

    Article  Google Scholar 

  • d’Avella A, Portone A, Lacquaniti F (2011) Superposition and modulation of muscle synergies for reaching in response to a change in target location. J Neurophysiol 106(6):2796–2812

    Article  Google Scholar 

  • Daly J, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M (2009) Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33(4):203

    Article  Google Scholar 

  • de NAP Shelton F, Reding MJ (2001) Effect of lesion location on upper limb motor recovery after stroke. Stroke 32(1):107–112

    Google Scholar 

  • Deutsch JE (2011) Using virtual reality to improve walking poststroke: translation to individuals with diabetes. J Diabetes Sci Technol 5(2):309–314

    Google Scholar 

  • Deutsch JE, Paserchia C, Vecchione C, Mirelman A, Lewis JA, Boian R, Burdea G (2004) Improved gait and elevation speed of individuals post-stroke after lower extremity training in virtual environments. J Neurol Phys Ther 28(4):185–186

    Google Scholar 

  • Dickstein R (2008) Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair 22(6):649–660

    Article  Google Scholar 

  • Dimyan MA, Cohen LG (2010) Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabil Neural Repair 24(2):125–135. doi:10.1177/1545968309345270

    Article  Google Scholar 

  • Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3(9):528–536

    Article  Google Scholar 

  • Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J (1992) Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23(8):1084–1089

    Article  Google Scholar 

  • Fluet G, Merians A, Qiu Q, Lafond I, Saleh S, Ruano V, Delmonico A, Adamovich S (2012) Robots integrated with virtual reality simulations for customized motor training in a person with upper extremity hemiparesis: a case study. J Neurol Phys Ther 36(2):79–86

    Article  Google Scholar 

  • Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D (2008) Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 22(7–8):625–632

    Google Scholar 

  • Gizzi L, Nielsen JF, Felici F, Moreno JC, Pons JL, Farina D (2012) Motor modules in robot-aided walking. J NeuroEng Rehabil 9(1):76

    Article  Google Scholar 

  • Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146(2):269–277

    Article  Google Scholar 

  • Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FEN et al (2005) Microcircuits in action–from CPGs to neocortex. Trends Neurosci 28(10):525–533

    Article  Google Scholar 

  • Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E (1987) Arm function after stroke: measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry 50(6):714–719

    Article  Google Scholar 

  • Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics Stroke Rehabil 14(2):52–61

    Article  Google Scholar 

  • Hesse S, Werner C (2009) Connecting research to the needs of patients and clinicians. Brain Res Bull 78(1):26–34

    Article  Google Scholar 

  • Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23(1):5–13

    Google Scholar 

  • Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 6(1):5

    Article  Google Scholar 

  • Ifejika-Jones NL, Barrett AM (2011) Rehabilitation emerging technologies, innovative therapies, and future objectives. Neurotherapeutics 8(3):452–462

    Article  Google Scholar 

  • Institute of Medicine (US), Committee on Quality of Health Care in America. (2001) Crossing the quality chasm: a new health system for the 21st century. National Academies Press

    Google Scholar 

  • Iosa M, Cincotti F, Pisotta I, Tamburella F, Mattia D, Molinari M (2011) What users need. Requirements in BNCI-driven robot for gait rehabilitation after stroke: a pilot study. Int J Bioelectromagnetism 13:13–15

    Google Scholar 

  • Jezernik S, Colombo G, Keller T, Frueh H, Morari M (2003) Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation: technology at the neural. Interface 6(2):108–115

    Google Scholar 

  • Krebs HI, Hogan N (2006) Therapeutic robotics: a technology push. Proc IEEE 94(9):1727–1738

    Article  Google Scholar 

  • Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87

    Article  Google Scholar 

  • Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: Proceedings of ICRA ‘09, pp 2556–2562

    Google Scholar 

  • Kwakkel G, Kollen B, Twisk J (2006) Impact of time on improvement of outcome after stroke. Stroke 37(9):2348–2353

    Article  Google Scholar 

  • Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121

    Google Scholar 

  • Lange B, Flynn S, Proffitt R, Chang C, Rizzo AA (2010) Development of an interactive game-based rehabilitationtool for dynamic balance training. Topics in StrokeRehabil 17(5):345–352

    Article  Google Scholar 

  • Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1783

    Article  Google Scholar 

  • Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. In: Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, vol 2, pp 4888–4891

    Google Scholar 

  • Mattia D, Pichiorri F, Molinari M, Rupp R (2012) Brain computer interface for hand motor function restoration and rehabilitation. Towards Practical Brain-Computer Interfaces, pp 131–153

    Google Scholar 

  • Meadmore KL, Hughes AM, Freeman CT, Cai Z, Tong D, Burridge JH, Rogers E (2012) Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J NeuroEng Rehabil 9:32

    Article  Google Scholar 

  • Mehrholz J, Werner C, Kugler J, Pohl M (2007) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 4(4)

    Google Scholar 

  • Metrot J, Mottet D, Hauret I, Bonnin HY, VanDokkum L, Torre K, Laffont I (2013) Changes in bimanual coordination during the first 6 weeks after moderate hemiparetic stroke. Neurorehabil Neural Repair 27:251–259

    Google Scholar 

  • Moreno JC, Brunetti F, Rocon E, Pons JL (2008) Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness. Med Biol Eng Comput 46(1):43–53

    Article  Google Scholar 

  • Morone G, Bragoni M, Iosa M, De Angelis D, Venturiero V, Coiro P, Pratesi L, Paolucci S (2011) Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair 25(7):636–644

    Article  Google Scholar 

  • Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S (2012) Who may have durable benefit from robotic gait training? A 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke 43(4):1140–1142

    Article  Google Scholar 

  • Nilsen DM, Gillen G, Gordon AM (2010) Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am J Occup Ther 64(5):695–708

    Article  Google Scholar 

  • Patton J, Brown DA, Peshkin M, Santos-Munné JJ, Makhlin A, Lewis E, Colgate EJ, Schwandt D (2008) KineAssist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil 15(2):131–139

    Article  Google Scholar 

  • Pei, Y., Kim, Y., Obinata, G., Hase, K., and Stefanov, D. (2011). Trajectory planning of a robot for lower limb rehabilitation. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pages 1259–1263. IEEE

    Google Scholar 

  • Perfetti C (2001) L’exercice thérapeutique cognitif pour la rééducation du patient hémiplégique Elsevier Masson

    Google Scholar 

  • Peurala S, Airaksinen O, Huuskonen P, Jakala P, Juhakoski M, Sandell K, Tarkka I, Sivenius J (2009) Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med 41(3):166–173

    Article  Google Scholar 

  • Pichiorri F, Fallani FDV, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kubler A, Mattia D (2011a) Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness. J Neural Eng 8(2):025020

    Article  Google Scholar 

  • Pichiorri F, Cincotti F, de Vico Fallani F, Pisotta I, Morone G, Molinari M, Mattia D (2011b) Towards a brain computer Interface-based rehabilitation: from bench to bedside. In Proceedings of the 5th international brain–computer interface conference, Verlag der Technischen Universitat Graz, Graz, Austria, pp 268–271

    Google Scholar 

  • Pichiorri F, Morone G, Cincotti F et al (2012) Clinical trial design to validate a BCI-supported task-specific training in neurorehabilitation after stroke. Eur J Neurol 19:566

    Google Scholar 

  • Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P (2006) Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev 2

    Google Scholar 

  • Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW (2008) Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 22(1):64–71

    Google Scholar 

  • Rand D, Kizony R, Weiss P (2008) The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J Neurol Physl Ther 32(4):155–163

    Article  Google Scholar 

  • Rogers L, Madhavan S, Roth H, Stinear J (2011) Transforming neurorehabilitation of walking following stroke: the promise of non-invasive brain stimulation–a review. Restor Neurol Neurosci 29(6):507–516

    Google Scholar 

  • Rose FD, Brooks BM, Rizzo AA (2005) Virtual reality in brain damage rehabilitation: review. Cyber Psychol Behav 8(3):241–262. doi:10.1089/cpb.2005.8.241

    Article  Google Scholar 

  • Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: Proceedings of ICORR’05, pp 394–399

    Google Scholar 

  • Sartori L, Camperio Ciani A, Bulgheroni M, Castiello U (2012) Reaching and grasping behavior in Macaca fascicularis: a kinematic study. Exp Brain Res 1–6

    Google Scholar 

  • Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J NeuroengRehabil 6:23

    Google Scholar 

  • Schmidt H, Hesse S, Werner C, Bardeleben A (2004) Upper and lower extremity robotic devices to promote motor recovery after stroke-recent developments. In: Engineering in medicine and biology society, 2004. IEMBS’04. 26th annual international conference of the IEEE, vol 2, pp 4825–4828 (IEEE)

    Google Scholar 

  • Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ (2009) A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) trial. Phys Ther 89(12):1327–1336

    Article  Google Scholar 

  • Scott CL, Phillips LH, Johnston M, Whyte MM, MacLeod MJ (2012) Emotion processing and social participation following stroke: study protocol. BMC Neurol 12(1):56

    Article  Google Scholar 

  • Sharma N, Cohen LG (2012) Recovery of motor function after stroke. Dev Psychobiol

    Google Scholar 

  • Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, M′etrailler P, Brodard R, Reynard F (2009) The WalkTrainer-a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Syst Rehabil Eng 17(1):38–45

    Article  Google Scholar 

  • Stern PH, McDowell F, Miller JM, Robinson M (1970) Effects of facilitation exercise techniques in stroke rehabilitation. Arch Phys Med Rehabil 51:526–531

    Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(1):170–180

    Article  Google Scholar 

  • Sunderland A, Tinson D, Bradley L, Hewer RL (1989) Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry 52(11):1267–1272

    Article  Google Scholar 

  • Taub E, Morris DM (2001) Constraint-induced movement therapy to enhance recovery after stroke. Curr Atheroscler Rep 3(4):279–286

    Article  Google Scholar 

  • Taub E, Crago JE, Uswatte G (1998) Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation. Rehabil Psychol 43(2):152

    Article  Google Scholar 

  • Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A (2006) A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37(4):1045–1049

    Article  Google Scholar 

  • Umberger BR, Rubenson J (2011) Understanding muscle energetics in locomotion: new modeling and experimental approaches. Exerc Sport Sci Rev 39(2):59

    Article  Google Scholar 

  • Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Article  Google Scholar 

  • Weiss P, Kizony R, Feintuch U, Katz N (2006) Virtual reality in neurorehabilitation. In: Selzer M, Cohen L, Clarke S, Duncan P, Gage F (eds) Textbook of neural repair and rehabilitation. Cambridge University Press, Cambridge, pp 182–197

    Google Scholar 

  • Wheeler JW, Krebs HI, Hogan N (2004) An ankle robot for a modular gait rehabilitation system. In: Proceedings of IROS’04, vol 2, pp 1680–1684

    Google Scholar 

  • Wirz M, Zemon D, Rupp R, Scheel A, Colombo G, Dietz V, Hornby T et al (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86(4):672–680

    Article  Google Scholar 

  • Wu C, Chuang L, Lin K, Chen H, Tsay P (2011) Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabil Neural Repair 25(2):130–139

    Article  Google Scholar 

  • Ziegler MD, Zhong H, Roy RR, Edgerton VR (2010) Why variability facilitates spinal learning. J Neurosci 30(32):10720–10726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Asín Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asín Prieto, G., Cano-de-la-Cuerda, R., López-Larraz, E., Metrot, J., Molinari, M., van Dokkum, L.E.H. (2014). Emerging Perspectives in Stroke Rehabilitation. In: Pons, J., Torricelli, D. (eds) Emerging Therapies in Neurorehabilitation. Biosystems & Biorobotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38556-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38556-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38555-1

  • Online ISBN: 978-3-642-38556-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics