Skip to main content

Sensory Updates to Combat Path-Integration Drift

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7884))

Included in the following conference series:

  • 1708 Accesses

Abstract

Even without sensory input, an animal can estimate how far it has moved by integrating its velocity, a process called path integration. The entorhinal cortex (EC) and hippocampus seem to be involved in path integration, and in an animal’s perceived location in space. However, path integration is highly susceptible to accumulating errors. A real animal avoids this problem by incorporating sensory input (e.g. vision) and updating its perceived position. The best path integration models do not yet incorporate this sensory-updating feature. In this paper, we extend one such model to enable sensory updating, and demonstrate its effectiveness in a series of computer simulations of spiking neural-network models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hafting, T., Fyhn, M., Molden, S., Moser, M., Moser, E.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  2. Welday, A.C., Shlifer, I.G., Bloom, M.L., Zhang, K., Blair, H.T.: Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference. Journal of Neuroscience 31(45), 16157–16176 (2011)

    Article  Google Scholar 

  3. Zilli, E.A., Hasselmo, M.E.: Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing. Journal of Neuroscience 30(41), 13850–13860 (2010)

    Article  Google Scholar 

  4. Orchard, J., Yang, H., Ji, X.: Navigation by path integration and the fourier transform: A spiking-neuron model. In: ZaÏane, O., Zilles, S. (eds.) Canadian AI 2013. LNCS (LNAI), vol. 7884, pp. 138–149. Springer, Heidelberg (2013)

    Google Scholar 

  5. Blair, H., Welday, A.C., Zhang, K.: Scale-Invariant Memory Representations Emerge from Moire Interference between Grid Fields That Produce Theta Oscillations: A Computational Model. Journal of Neuroscience 27(12), 3211–3229 (2007)

    Article  Google Scholar 

  6. Burgess, N., Barry, C., O’Keefe, J.: An oscillatory interference model of grid cell firing. Hippocampus 17(9), 801–812 (2007)

    Article  Google Scholar 

  7. Hasselmo, M.E., Brandon, M.P.: Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory. Neural Plasticity (2008)

    Google Scholar 

  8. Etienne, A.S., Maurer, R., Seguinot, V.: Path Integration in Mammals and its Interaction with Visual Landmarks. Journal of Experimental Biology 199, 201–209 (1996)

    Google Scholar 

  9. Williams, J.M., Givens, B.: Stimulation-induced reset of hippocampal theta in the freely performing rat. Hippocampus 13(1), 109–116 (2003)

    Article  Google Scholar 

  10. Conklin, J., Eliasmith, C.: A Controlled Attractor Network Model of Path Integration in the Rat. Journal of Computational Neuroscience 18, 183–203 (2005)

    Article  MathSciNet  Google Scholar 

  11. Eliasmith, C., Anderson, C.H.: Neural engineering: Computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, X., Kushagra, S., Orchard, J. (2013). Sensory Updates to Combat Path-Integration Drift. In: Zaïane, O.R., Zilles, S. (eds) Advances in Artificial Intelligence. Canadian AI 2013. Lecture Notes in Computer Science(), vol 7884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38457-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38457-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38456-1

  • Online ISBN: 978-3-642-38457-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics