Skip to main content

Estimation of Time-Varying Sparse Signals in Sensor Networks

  • Chapter
  • First Online:
Compressed Sensing & Sparse Filtering

Part of the book series: Signals and Communication Technology ((SCT))

  • 3567 Accesses

Abstract

In this chapter, we consider the problem of reconstructing time-varying sparse signals in a sensor network with limited communication resources. In each time interval, the fusion center transmits the predicted signal estimate and its corresponding error covariance to a selected subset of sensors. The selected sensors compute quantized innovations and transmit them to the fusion center. We consider the situation where the signal is sparse, i.e., a large fraction of its components is zero-valued. We discuss algorithms for signal estimation in the described scenario, analyze their complexity, and demonstrate their near-optimal performance even in the case where sensors transmit a single bit (i.e., the sign of innovation) to the fusion center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribeiro A, Giannakis GB, Roumeliotis SI (2006) Soi-kf: distributed kalman filtering with low-cost communications using the sign of innovations. IEEE Trans Signal Process 54(12):4782–4795

    Article  Google Scholar 

  2. Simon D, Chia TL (2002) Kalman filtering with state equality constraints. IEEE Trans Aerosp Electron Syst 38(1):128–136

    Article  Google Scholar 

  3. Sukhavasi RT, Hassibi B (2009) The kalman like particle filter : optimal estimation with quantized innovations/measurements. In: IEEE CDC, pp 4446–4451

    Google Scholar 

  4. Candes EJ, Tao T (2008) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  Google Scholar 

  5. Donoho DL (2002) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  6. Bajwa W, Haupt J, Sayeed A, Nowak R (2006) Compressive wireless sensing. In: IPSN, pp 134–142

    Google Scholar 

  7. Haupt J, Bajwa WU, Rabbat M, Nowak R (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101

    Article  Google Scholar 

  8. Angelosante D, Giannakis GB, Grossi E (2009a) Compressed sensing of time varying signals. In: IEEE DSP, pp 1–8.

    Google Scholar 

  9. Angelosante D, Giannakis GB (2009) RLS-weighted Lasso for adaptive estimation of sparse signals. In: IEEE ICASSP, pp 3245–3248.

    Google Scholar 

  10. Babadi B, Kalouptsidis N, Tarokh V (2010) SPARLS: the sparse RLS algorithm. IEEE Trans Signal Process 58(8):4013–4025

    Google Scholar 

  11. Angelosante D, Roumeliotis SI, Giannakis GB (2009b) Lasso-Kalman smoother for tracking sparse signals. In: IEEE ACSSC, pp 181–185

    Google Scholar 

  12. Vaswani N, Lu W (2010) Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans Signal Process 58(9):4595–4607

    Google Scholar 

  13. Vaswani N (2010) LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Trans Signal Process 58(8):4108–4120

    Article  MathSciNet  Google Scholar 

  14. Carmi AY, Gurfil P, Kanevsky D (2010) Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Trans Signal Process Mag 58(4):2405–2409

    Article  MathSciNet  Google Scholar 

  15. Carmi AY, Mihaylova L, and Kanevsky D (2012) Unscented compressed sensing. In: IEEE ICASSP, pp 5249–5252

    Google Scholar 

  16. Dai W, Pham HV, and Milenkovic O (2009) A comparative study of quantized compressive sensing schemes. In: IEEE ISIT, pp 11–15

    Google Scholar 

  17. Zymnis A, Boyd S, Candes E (2010) Compressed sensing with quantized measurements. IEEE Signal Process Lett 17(2):149–152

    Article  Google Scholar 

  18. Qui K, Dogandzic A (2012) Sparse signal reconstruction from quantized noisy measurements via GEM hard thresholding. IEEE Trans Signal Process 60(5):2628–2634

    Article  MathSciNet  Google Scholar 

  19. Boufounos PT (2009) Greedy sparse signal reconstruction from sign measurements. IEEE ACSSC, pp 1305–1309

    Google Scholar 

  20. Laska JN, Wen Z, Yin W, Baranuik RG (2011) Trust, but verify: fast and accurate signal recovery from 1-bit compressive measurements. IEEE Trans Signal Process 59(11):5289–5301, 1417–1420

    Google Scholar 

  21. Kamilov U, Goyal VK, Rangan S (2011) Message-passing estimation from quantized samples. eprint arXiv:1105.6368

    Google Scholar 

  22. Mezghani A, Nossek JA (2012) Efficient reconstruction of sparse vectors from quantized observations. IEEE ITG Workshop on smart antennas (WSA)

    Google Scholar 

  23. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice Hall, Upper Saddle River

    Google Scholar 

  24. Iltis RA (2006) A sparse Kalman filter with application to acoustic communications channel estimation. In: IEEE OCEANS, pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar Shamaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shamaiah, M., Vikalo, H. (2014). Estimation of Time-Varying Sparse Signals in Sensor Networks. In: Carmi, A., Mihaylova, L., Godsill, S. (eds) Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38398-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38398-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38397-7

  • Online ISBN: 978-3-642-38398-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics