Skip to main content

A Vaccination Strategy Based on a State Feedback Control Law for Linearizing SEIR Epidemic Models

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 357))

  • 1937 Accesses

Abstract

A vaccination strategy for fighting against the propagation of epidemic diseases within a host population is purposed. A SEIR epidemic model is used to describe the propagation of the illness. This compartmental model divides the population in four classes by taking into account their status related to the infection. In this way, susceptible, exposed, infectious and recovered populations are included in the model. The vaccination strategy is based on a continuous-time nonlinear control law synthesized via an exact feedback input-output linearization approach. The asymptotic eradication of the infection from the host population under such a vaccination is proved. Moreover, the positivity and stability properties of the controlled system are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De la Sen, M., Alonso-Quesada, S.: On Vaccination Control Tools for a General SEIR-Epidemic Model. In: 18th Mediterranean Conference on Control & Automation, MED 2010, pp. 1322–1328 (2010), doi:10.1109/MED.2010.5547865

    Google Scholar 

  2. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton and Oxford (2008)

    MATH  Google Scholar 

  3. Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global Dynamics of a SEIR Model with Varying Total Population Size. Mathematical Biosciences 160, 191–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Makinde, O.D.: Adomian Decomposition Approach to a SIR Epidemic Model with Constant Vaccination Strategy. Applied Mathematics and Computation 184, 842–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mollison, D.: Epidemic Models: Their Structure and Relation to Data. Publications of the Newton Institute, Cambridge University Press (2003)

    Google Scholar 

  6. De la Sen, M., Agarwal, R. P., Ibeas, A., Alonso-Quesada, S.: On the Existence of Equilibrium Points, Boundedness, Oscillating Behavior and Positivity of a SVEIRS Epidemic Model Under Constant and Impulsive Vaccination. Advances in Difference Equations 2011, Article ID 748608, 32 pages (2011), doi:10.1155/2011/748608

    Google Scholar 

  7. Song, X.Y., Jiang, Y., Wei, H.M.: Analysis of a Saturation Incidence SVEIRS Epidemic Model with Pulse and Two Time Delays. Applied Mathematics and Computation 214, 381–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jumpen, W., Orankitjaroen, S., Boonkrong, P., Wiwatanapataphee, B.: SEIQR-SIS Epidemic Network Model and Its Stability. International Journal of Mathematics and Computers in Simulation 5, 326–333 (2011)

    Google Scholar 

  9. Safi, M.A., Gumel, A.B.: Mathematical Analysis of a Disease Transmission Model with Quarantine, Isolation and an Imperfect Vaccine. Computers and Mathematics with Applications 61, 3044–3070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. De la Sen, M., Agarwal, R.P., Ibeas, A., Alonso-Quesada, S.: On a Generalized Time-Varying SEIR Epidemic Model with Mixed Point and Distributed Time-Varying Delays and Combined Regular and Impulsive Vaccination Controls. Advances in Difference Equations 2010, Article ID 281612, 42 pages (2010), doi:10.1155/2010/281612

    Google Scholar 

  11. Zhang, T.L., Liu, J.L., Teng, Z.D.: Dynamic Behaviour for a Nonautonomous SIRS Epidemic Model with Distributed Delays. Applied Mathematics and Computation 214, 624–631 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, R., Ma, Z., Wang, Z.: Global Stability of a Delayed SIRS Epidemic Model with Saturation Incidence and Temporary Immunity. Computers and Mathematics with Applications 59, 3211–3221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukhopadhyay, B., Bhattacharyya, R.: Existence of Epidemic Waves in a Disease Transmission Model with Two-Habitat Population. International Journal of Systems Science 38, 699–707 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isidori, A.: Nonlinear Control Systems. Springer, London (1995)

    Book  MATH  Google Scholar 

  15. Fulton, W., Harris, J.D.: Representation Theory. Springer, New York (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso-Quesada, S., De la Sen, M., Ibeas, A. (2013). A Vaccination Strategy Based on a State Feedback Control Law for Linearizing SEIR Epidemic Models. In: Gabriel, J., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2012. Communications in Computer and Information Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38256-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38256-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38255-0

  • Online ISBN: 978-3-642-38256-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics