Skip to main content

Group Nearest Neighbor Queries in the L 1 Plane

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7876))

Abstract

Let P be a set of n points in the plane. The k-nearest neighbor (k-NN) query problem is to preprocess P into a data structure that quickly reports k closest points in P for a query point q. This paper addresses a generalization of the k-NN query problem to a query set Q of points, namely, the group nearest neighbor problem, in the L 1 plane. More precisely, a query is assigned with a set Q of at most m points and a positive integer k with k ≤ n, and the distance between a point p and a query set Q is determined as the sum of L 1 distances from p to all q ∈ Q. The maximum number m of query points Q is assumed to be known in advance and to be at most n; that is, m ≤ n. In this paper, we propose two methods, one based on the range tree and the other based on the segment dragging query, obtaining the following complexity bounds: (1) a group k-NN query can be handled in O(m 2logn + k(loglogn + logm)) time after preprocessing P in O(m 2 n log2 n) time and space, or (2) a query can be handled in O(m 2logn + (k + m)log2 n) time after preprocessing P in O(m 2 nlogn) time using O(m 2 n) space. We also show that our approach can be applied to the group k-farthest neighbor query problem.

This research was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor searching under uncertainty. In: Proceedings of the 31st Symposium on Principles of Database Systems, PODS 2012, pp. 225–236. ACM, New York (2012)

    Chapter  Google Scholar 

  2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae, S.W., Korman, M., Tokuyama, T.: All farthest neighbors in the presence of highways and obstacles. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 71–82. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bent, S.W., John, J.W.: Finding the median requires 2n comparisons. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 213–216. ACM, New York (1985)

    Chapter  Google Scholar 

  5. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 97–104. ACM, New York (2006)

    Google Scholar 

  6. Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3(1), 205–221 (1988)

    Article  MathSciNet  Google Scholar 

  7. Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theoretical Computer Science 296(1), 47–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google Scholar 

  9. Durier, R., Michelot, C.: Geometrical properties of the fermat-weber problem. European Journal of Operational Research 20(3), 332–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Y., Shou, L., Chen, K., Chen, G.: Aggregate farthest-neighbor queries over spatial data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 149–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirteeth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)

    Chapter  Google Scholar 

  12. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)

    Article  Google Scholar 

  13. Katoh, N., Iwano, K.: Finding k farthest pairs and k closest/farthest bichromatic pairs for points in the plane. International Journal of Computational Geometry and Applications 05(01n02), 37–51 (1995)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 1009–1020. ACM, New York (2011)

    Chapter  Google Scholar 

  15. Mitchell, J.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nie, J., Parrilo, P., Sturmfels, B.: Semidefinite representation of the k-ellipse. In: Algorithms in Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 146, pp. 117–132. Springer, New York (2008)

    Chapter  Google Scholar 

  17. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: Proceedings of the 20th International Conference on Data Engineering, March-April 2, pp. 301–312 (2004)

    Google Scholar 

  18. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

    Article  Google Scholar 

  19. Rahul, S., Gupta, P., Janardan, R., Rajan, K.S.: Efficient top-k queries for orthogonal ranges. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 110–121. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1996)

    Google Scholar 

  21. Sproull, R.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6, 579–589 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H., Zhang, W.: The L1 Nearest Neighbor Searching with Uncertain Queries. ArXiv e-prints (November 2012)

    Google Scholar 

  23. Witzgall, C.: Optimal location of a central facility: mathematical models and concepts. National Bureau of Standards (1964)

    Google Scholar 

  24. Yiu, M., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Transactions on Knowledge and Data Engineering 17(6), 820–833 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, HK., Bae, S.W., Son, W. (2013). Group Nearest Neighbor Queries in the L 1 Plane. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38236-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38235-2

  • Online ISBN: 978-3-642-38236-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics