Skip to main content

Selection by Recursively Enumerable Sets

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7876))

  • 952 Accesses

Abstract

For given sets A, B and Z of natural numbers where the members of Z are z 0, z 1, … in ascending order, one says that A is selected from B by Z if A(i) = B(z i ) for all i. Furthermore, say that A is selected from B if A is selected from B by some recursively enumerable set, and that A is selected from B in n steps iff there are sets E 0,E 1,…,E n such that E 0 = A, E n  = B, and E i is selected from E i + 1 for each i < n.

The following results on selections are obtained in the present paper. A set is ω-r.e. if and only if it can be selected from a recursive set in finitely many steps if and only if it can be selected from a recursive set in two steps. There is some Martin-Löf random set from which any ω-r.e. set can be selected in at most two steps, whereas no recursive set can be selected from a Martin-Löf random set in one step. Moreover, all sets selected from Chaitin’s Ω in finitely many steps are Martin-Löf random.

F. Stephan is supported in part by NUS grant R252-000-420-112. Part of the work was done while W. Merkle, F. Stephan and Y. Yang visited W. Wang at the Sun Yat-Sen University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calude, C.S.: Chaitin Ω numbers, Solovay machines and incompleteness. Theoretical Computer Science 284, 269–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jain, S., Stephan, F., Teutsch, J.: Closed left-r.e. sets. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 218–229. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Transactions of the American Mathematical Society 363, 5465–5480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kjos-Hanssen, B., Stephan, F., Teutsch, J.: Arithmetic complexity via effective names for random sequences. ACM Transactions on Computational Logic 13(3), 24:1–24:18 (2012)

    Article  MathSciNet  Google Scholar 

  5. van Lambalgen, M.: The axiomatization of randomness. The Journal of Symbolic Logic 55(3), 1143–1167 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, 3rd edn. Springer (2008)

    Google Scholar 

  7. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miller, J.S.: The K-degrees, low for K degrees, and weakly low for K sets. Notre Dame Journal of Formal Logic 50(4), 381–391 (2010)

    Article  Google Scholar 

  9. Nies, A.: Computability and Randomness. Oxford Logic Guides, vol. 51. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  10. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland (1989)

    Google Scholar 

  11. Odifreddi, P.: Classical Recursion Theory, Volume II. Studies in Logic and the Foundations of Mathematics, vol. 143. Elsevier (1999)

    Google Scholar 

  12. Post, E.L.: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society 50, 284–316 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Springer Lecture Notes in Mathematics (1971)

    Google Scholar 

  14. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Google Scholar 

  15. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25, 83–124 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merkle, W., Stephan, F., Teutsch, J., Wang, W., Yang, Y. (2013). Selection by Recursively Enumerable Sets. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38236-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38235-2

  • Online ISBN: 978-3-642-38236-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics