Skip to main content

Molecular Evolution of Disrupted Transfer RNA Genes and Their Introns in Archaea

  • Chapter
  • First Online:
Evolutionary Biology: Exobiology and Evolutionary Mechanisms

Abstract

Transfer RNA (tRNA) is one of the classical non-coding RNAs and is essential for decoding the genomic sequence into proteins. The disrupted tRNA genes in the genomes of the Archaea have been studied in recent years and three unique examples have been found: multiple-intron-containing tRNAs, split tRNAs, and permuted tRNAs. During this research, it was noted that frequent intron transpositions might have occurred among the tRNA genes in the Archaea. Because these tRNAs are encoded as precursor forms (pre-tRNAs) in the genome, they must be processed to yield mature functional tRNAs. Here, the co-evolutionary history of the tRNA gene architecture and the tRNA splicing enzymes in the domain Archaea are proposed. In this review, I discuss a possible evolutionary scenario for the disrupted tRNAs and their introns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (2006) Lineages of acidophilic archaea revealed by community genomic analysis. Science 314:1933–1935

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107:8806–8811

    Article  PubMed  CAS  Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Weiner A (1997) Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell 89:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  • Chan PP, Cozen AE, Lowe TM (2011) Discovery of permuted and recently split transfer RNAs in Archaea. Genome Biol 12:R38

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2009) Formal proof that the split genes of tRNAs of Nanoarchaeum equitans are an ancestral character. J Mol Evol 69:505–511

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2012) The origin of the tRNA molecule: Independent data favor a specific model of its evolution. Biochimie 94:1464–1466

    Article  PubMed  Google Scholar 

  • Fujishima K, Sugahara J, Tomita M, Kanai A (2008) Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves. PLoS One 3:e1622

    Article  PubMed  Google Scholar 

  • Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, Kanai A (2009) Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci USA 106:2683–2687

    Article  PubMed  CAS  Google Scholar 

  • Fujishima K, Sugahara J, Tomita M, Kanai A (2010) Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain. Mol Biol Evol 27:2233–2243

    Article  PubMed  CAS  Google Scholar 

  • Fujishima K, Sugahara J, Miller CS, Baker BJ, Di Giulio M, Takesue K, Sato A, Tomita M, Banfield JF, Kanai A (2011) A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity. Nucleic Acids Res 39:9695–9704

    Article  PubMed  CAS  Google Scholar 

  • Hirata A, Kitajima T, Hori H (2011) Cleavage of intron from the standard or non-standard position of the precursor tRNA by the splicing endonuclease of Aeropyrum pernix, a hyper-thermophilic Crenarchaeon, involves a novel RNA recognition site in the Crenarchaea specific loop. Nucleic Acids Res 39:9376–9389

    Article  PubMed  CAS  Google Scholar 

  • Hirata A, Fujishima K, Yamagami R, Kawamura T, Banfield JF, Kanai A, Hori H (2012) X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity. Nucleic Acids Res 40:10554–10566

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Lund AH, Duch M, Pedersen FS (2000) Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication. Nucleic Acids Res 28:791–799

    Article  PubMed  CAS  Google Scholar 

  • Mak J, Kleiman L (1997) Primer tRNAs for reverse transcription. J Virol 71:8087–8095

    PubMed  CAS  Google Scholar 

  • Marck C, Grosjean H (2003) Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. RNA 9:1516–1531

    Article  PubMed  CAS  Google Scholar 

  • Maruyama S, Sugahara J, Kanai A, Nozaki H (2010) Permuted tRNA genes in the nuclear and nucleomorph genomes of photosynthetic eukaryotes. Mol Biol Evol 27:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H et al (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Shiba T, Inaoka DK, Kita K, Kurisu G, Mineki S, Harada S, Watanabe Y, Yoshinari S (2011) A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity. J Mol Biol 405:92–104

    Article  PubMed  CAS  Google Scholar 

  • Randau L (2012) RNA processing in the minimal organism Nanoarchaeum equitans. Genome Biol 13:R63

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Soll D (2008) Transfer RNA genes in pieces. EMBO Rep 9:623–628

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, Soll D (2005a) The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci USA 102:17934–17939

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Munch R, Hohn MJ, Jahn D, Soll D (2005b) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433:537–541

    Article  PubMed  CAS  Google Scholar 

  • Saldanha R, Mohr G, Belfort M, Lambowitz AM (1993) Group I and group II introns. FASEB J 7:15–24 (official publication of the Federation of American Societies for Experimental Biology)

    PubMed  CAS  Google Scholar 

  • Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453

    Article  PubMed  CAS  Google Scholar 

  • Sugahara J, Yachie N, Sekine Y, Soma A, Matsui M, Tomita M, Kanai A (2006) SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level. In Silico Biol 6:411–418

    PubMed  CAS  Google Scholar 

  • Sugahara J, Kikuta K, Fujishima K, Yachie N, Tomita M, Kanai A (2008) Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales. Mol Biol Evol 25:2709–2716

    Article  PubMed  CAS  Google Scholar 

  • Sugahara J, Fujishima K, Nunoura T, Takaki Y, Takami H, Takai K, Tomita M, Kanai A (2012) Genomic heterogeneity in a natural archaeal population suggests a model of tRNA gene disruption. PLoS One 7:e32504

    Article  PubMed  CAS  Google Scholar 

  • Tanner M, Cech T (1996) Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA 2:74–83

    PubMed  CAS  Google Scholar 

  • Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP (2005a) Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea. Proc Natl Acad Sci USA 102:15418–15422

    Article  PubMed  CAS  Google Scholar 

  • Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP (2005b) Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. Proc Natl Acad Sci USA 102:8933–8938

    Article  PubMed  CAS  Google Scholar 

  • Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN (1997) The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89:849–858

    Article  PubMed  CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari S, Shiba T, Inaoka DK, Itoh T, Kurisu G, Harada S, Kita K, Watanabe Y (2009) Functional importance of crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease. Nucleic Acids Res 37:4787–4798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank all the members of the RNA Group at the Institute for Advanced Biosciences, Keio University, Japan, for their insightful discussions. Drs Junichi Sugahara (currently Spiber Inc., Japan) and Kosuke Fujishima (currently NASA Ames Research Center, USA), in particular, contributed to the discovery of novel tRNAs in the Archaea during their graduate studies at Keio University. This research was supported, in part, by a Grant-in-Aid for Scientific Research (B) (no. 22370066) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanai, A. (2013). Molecular Evolution of Disrupted Transfer RNA Genes and Their Introns in Archaea. In: Pontarotti, P. (eds) Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38212-3_12

Download citation

Publish with us

Policies and ethics