Skip to main content

High-Field Magnetic Resonance Mapping of the Border Between Primary Motor (Area 4) and Somatosensory (Area 3a) Cortex in Ex-Vivo and In-Vivo Human Brains

  • Chapter
  • First Online:
Microstructural Parcellation of the Human Cerebral Cortex

Abstract

Unraveling the functional properties of structural elements in the brain is one of the fundamental goals of neuroscientific research. In the cerebral cortex this is not so easy to accomplish, since cortical areas are defined microstructurally in post-mortem brains but functionally in living brains with electrophysiological or neuroimaging techniques – and cortical areas vary in their topographical properties across individual brains. To map both microstructure and function in the same brains noninvasively in vivo would represent a huge leap forward. In this chapter, we show our approach, based on a MP2RAGE sequence run on a 7 T Siemens MR scanner to produce in living human subjects quantitative T1 maps that reflect local microanatomy. On inflated surface maps of individual subjects, cortical areas known from post-mortem studies to be heavily myelinated are easily discernible from surrounding less myelinated regions. Classically, cortical areas (and their precise borders that are indispensable for a valid correlation with functional data) are defined by their myelo- and cytoarchitectonic pattern ex vivo, i.e., in post-mortem brains. Hence, with the same MP2RAGE sequence at 7 T we scan fixed tissue blocks of the human cortex, section them with a microtome, stain the sections for myelin sheaths or cell bodies, and correlate the MR architecture directly with myelo- and cytoarchitecture. This “triple jump” approach allows to (i) define a cortical area based on myelo- and cytoarchitecture, (ii) extract the “MR fingerprint” of this area ex vivo, and (iii) transfer this “fingerprint” to living brains and define this area in vivo. With this technique we mapped in living subjects the functionally important border between primary motor (Brodmann Area 4) and somatosensory (Brodmann Area 3a) cortex. This technology sets the stage for the development of an in vivo myeloarchitectonic brain map, with the enormous potential to make direct correlations between microstructure and function in living human brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space – where and how variable? Neuroimage 11:66–84

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352

    Article  CAS  Google Scholar 

  • Augustinack JC, van der Kouwe AJW, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR (2005) Detection of entorhinal layer II using 7 Tesla magnetic resonance imaging. Ann Neurol 57:489–494

    Article  PubMed  Google Scholar 

  • Batsch EG (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue Deutsche Chirurgie. Enke, Stuttgart

    Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    Article  PubMed  Google Scholar 

  • Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    Article  PubMed  CAS  Google Scholar 

  • Dick F, Taylor Tierney A, Lutti A, Josephs O, Sereno MI, Weiskopf N (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 32:16095–16105

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006a) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Heim S, Zilles K, Amunts K (2006b) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32:570–582

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006c) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36:511–521

    Article  PubMed  Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. Neuroimage 10:63–83

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex – from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19

    Article  PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: Observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–631

    Article  PubMed  CAS  Google Scholar 

  • Heidemann RM, Ivanov D, Trampel R, Fasano F, Meyer H, Pfeuffer J, Turner R (2012) Isotropic submillimeter fMRI in the human brain at 7 T: combining reduced field-of-view imaging and partially parallel acquisitions. Magn Reson Med 68:1506–1516

    Article  PubMed  Google Scholar 

  • Hopf A (1954) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1:208–279

    Google Scholar 

  • Hopf A (1955) Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen. J Hirnforsch 2:36–54

    Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2:311–333

    PubMed  CAS  Google Scholar 

  • Hopf A, Vitzthum HG (1957) Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen. J Hirnforsch 3:79–104

    PubMed  CAS  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983a) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:315–326

    Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983b) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337

    Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58:400–411

    PubMed  CAS  Google Scholar 

  • Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20:1448–1461

    Article  PubMed  Google Scholar 

  • Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482

    Article  PubMed  CAS  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area h0c5. Cereb Cortex 17:562–574

    Article  PubMed  Google Scholar 

  • Marques JP, Kober T, Krueger G, van der Zwaag W, van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281

    Article  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  PubMed  CAS  Google Scholar 

  • Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9:235–241

    Article  PubMed  CAS  Google Scholar 

  • Moore CI, Stern CE, Corkin S, Fischl B, Gray AC, Rosen BR, Dale AM (2000) Segregation of somatosensory activation in the human rolandic cortex using fMRI. J Neurophysiol 84:558–569

    PubMed  CAS  Google Scholar 

  • Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    Article  PubMed  Google Scholar 

  • Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    Article  PubMed  CAS  Google Scholar 

  • Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. Neuroimage 17:142–160

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Zilles K (1994) Brain atlases – a new research tool. Trends Neurosci 17:458–467

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Rev 26:87–105

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Geyer S, Amunts K, Schormann T, Schleicher A, Malikovic A, Zilles K (1997) Cytoarchitectural maps of the human brain in standard anatomical space. Hum Brain Mapp 5:222–227

    Article  PubMed  CAS  Google Scholar 

  • Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    Article  PubMed  Google Scholar 

  • Sereno MI, Lutti A, Weiskopf N, Dick F (2012) Mapping the human cortical surface by combining quantitative T1 with retinotopy. Cereb Cortex. doi:10.1093/cercor/bhs213

    Google Scholar 

  • Strasburger E (1937) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen. J Psychol Neurol 47(461–491):565–606

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  • Talairach J, Tournoux P (1993) Referentially oriented cerebral MRI anatomy. Atlas of stereotaxic anatomical correlations for gray and white matter. Thieme, Stuttgart

    Google Scholar 

  • Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966

    Article  PubMed  CAS  Google Scholar 

  • Trampel R, Ott DVM, Turner R (2011) Do the congenitally blind have a Stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21:2075–2081

    Article  PubMed  Google Scholar 

  • Vogt O (1910) Die myeloarchitektonische Felderung des menschlichen Stirnhirns. J Psychol Neurol 15:221–232

    Google Scholar 

  • Vogt O (1911) Die Myeloarchitektonik des Isocortex parietalis. J Psychol Neurol 18:379–390

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Geyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Geyer, S. (2013). High-Field Magnetic Resonance Mapping of the Border Between Primary Motor (Area 4) and Somatosensory (Area 3a) Cortex in Ex-Vivo and In-Vivo Human Brains. In: Geyer, S., Turner, R. (eds) Microstructural Parcellation of the Human Cerebral Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37824-9_9

Download citation

Publish with us

Policies and ethics