Skip to main content

MRI Methods for In-Vivo Cortical Parcellation

  • Chapter
  • First Online:
Microstructural Parcellation of the Human Cerebral Cortex

Abstract

The advent of whole-body MRI scanners at field strengths as high as 7 T has enabled a dramatic improvement of the spatial resolution of human brain images, in all three major attributes: structure, function and neural connectivity. Structural imaging of entire living human brains with an isotropic resolution of 300–400 μm is now feasible. Such images allow the discrimination of discrete cortical areas based largely on their distinctive myeloarchitecture. This chapter describes the challenges that have to be overcome in creating such images. Sources of contrast in structural MR brain images are summarized. Rationales are then provided for the currently preferred acquisition techniques, which give good signal-to-noise ratios, and relative freedom from the effects of the non-uniformity of the radiofrequency magnetic fields relating to spin excitation and MR signal reception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp do PM, Zakszewski E, Field AS (2011) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 1(6):423–446

    Article  PubMed  Google Scholar 

  • Andrews-Shigaki BC, Armstrong BS, Zaitsev M, Ernst T (2011) Prospective motion correction for magnetic resonance spectroscopy using single camera Retro-Grate reflector optical tracking. J Magn Reson Imaging 33(2):498–504

    Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1):805–821

    Article  PubMed  CAS  Google Scholar 

  • Augustinack JC, van der Kouwe AJ, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR (2005) Detection of entorhinal layer II using 7 Tesla magnetic resonance imaging. Ann Neurol 57:489–494

    Article  PubMed  Google Scholar 

  • Axer M, Amunts K, Grässel D, Palm C, Dammers J, Axer H, Pietrzyk U, Zilles K (2011) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage 54(2):1091–1101

    Article  PubMed  Google Scholar 

  • Barbier EL, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, Bandettini P, Grafman J, Koretsky AP (2002) Imaging cortical anatomy by high-resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48:735–738

    Article  PubMed  Google Scholar 

  • Blackband SJ, Buckley DL, Bui JD, Phillips MI (1999) NMR microscopy–beginnings and new directions. MAGMA 9(3):112–116

    PubMed  CAS  Google Scholar 

  • Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185(1):15–22

    Article  PubMed  Google Scholar 

  • Bock NA, Hashim E, Janik R, Stanisz GJ, Weiss M, Turner R, Geyer S (2013) Optimizing T1-weighted imaging of cortical myelin content at 3.0 Tesla. Neuroimage 65:1–12

    Google Scholar 

  • Bourgeois ME, Wajer FT, Roth M, Briguet A, Décorps M, van Ormondt D, Segebarth C, Graveron-Demilly D (2003) Retrospective intra-scan motion correction. J Magn Reson 163(2):277–287

    Article  PubMed  CAS  Google Scholar 

  • Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5:93–102

    Article  PubMed  Google Scholar 

  • Carmichael DW, Thomas DL, De Vita E, Fernández-Seara MA, Chhina N, Cooper M, Sunderland C, Randell C, Turner R, Ordidge RJ (2006) Improving whole brain structural MRI at 4.7 Tesla using 4 irregularly shaped receiver coils. Neuroimage 32(3):1176–1184

    Article  PubMed  Google Scholar 

  • Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Adad J, Polimeni JR, Helmer KG, Benner T, McNab JA, Wald LL, Rosen BR, Mainero C (2012) T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex. Neuroimage 60(2):1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S, Hogan EL (2001) Chromatographic resolution and quantitative assay of CNS tissue sphingoids and sphingolipids. J Lipid Res 42:301–308

    PubMed  CAS  Google Scholar 

  • De Vita E, Thomas DL, Roberts S, Parkes HG, Turner R, Kinchesh P, Shmueli K, Yousry TA, Ordidge RJ (2003) High resolution MRI of the brain at 4.7 Tesla using fast spin echo imaging. Br J Radiol 76(909):631–637

    Article  PubMed  Google Scholar 

  • Deichmann R (2006) Fast structural brain imaging using an MDEFT sequence with a FLASH-EPI hybrid readout. Neuroimage 33(4):1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Briggman KL, Helmstaedter M (2012) Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci 13(5):351–358

    PubMed  CAS  Google Scholar 

  • Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK (2008) Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 60(6):1372–1387

    Article  PubMed  Google Scholar 

  • Dhital B, Turner R (2012) Comparison between kurtosis and biexponential models for diffusion-weighted brain imaging with high resolution and high b-factor. Abstract 3624, ISMRM 20th Annual Meeting, Wiley Publishing

    Google Scholar 

  • Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14(11):1099–1112

    Article  PubMed  CAS  Google Scholar 

  • Duyn JH (2011) High-field MRI of brain iron. Methods Mol Biol 711:239–249

    Article  PubMed  CAS  Google Scholar 

  • Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104(28):11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23(8):1313–1321

    PubMed  Google Scholar 

  • Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710

    Article  PubMed  CAS  Google Scholar 

  • Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84

    Article  PubMed  Google Scholar 

  • Frahm J, Haase A, Matthaei D (1986) Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 10(2):363–368

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga M, Li TQ, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci USA 107(8):3834–3839

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex – from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19

    Article  PubMed  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31(32):11597–11616

    Article  PubMed  CAS  Google Scholar 

  • Gringel T, Schulz-Schaeffer W, Elolf E, Frölich A, Dechent P, Helms G (2009) Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time. J Magn Reson Imaging 29:1285–1292

    Article  PubMed  Google Scholar 

  • Helms G, Dathe H, Dechent P (2010) Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 64(1):177–185

    Article  PubMed  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3(6):823–833

    Article  PubMed  CAS  Google Scholar 

  • Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B (2008) Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39(4):1585–1599

    Article  PubMed  Google Scholar 

  • Hopf A (1954) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1:208–279

    Google Scholar 

  • Hopf A (1955) Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen. J Hirnforsch 2:36–54

    Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2(4):311–333

    PubMed  CAS  Google Scholar 

  • Jespersen SN, Bjarkam CR, Nyengaard JR, Chakravarty MM, Hansen B, Vosegaard T, Østergaard L, Yablonskiy D, Nielsen NC, Vestergaard-Poulsen P (2010) Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy. Neuroimage 49(1):205–216

    Article  PubMed  Google Scholar 

  • Kalantari S, Laule C, Bjarnason TA, Vavasour IM, MacKay AL (2011) Insight into in vivo magnetization exchange in human white matter regions. Magn Reson Med 66(4):1142–1151

    Article  PubMed  Google Scholar 

  • Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49(1):144–150

    Article  PubMed  Google Scholar 

  • Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20(2):285–291

    Article  PubMed  CAS  Google Scholar 

  • Kolind SH, Mädler B, Fischer S, Li DK, MacKay AL (2009) Myelin water imaging: implementation and development at 3.0T and comparison to 1.5T measurements. Magn Reson Med 62(1):106–115

    Article  PubMed  Google Scholar 

  • Kozlov M, Turner R (2011) Analysis of RF transmit performance for a 7T dual row multichannel MRI loop array. Conf Proc IEEE Eng Med Biol Soc 2011:547–553

    PubMed  Google Scholar 

  • Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192(2):521–529

    PubMed  CAS  Google Scholar 

  • Lankford CL, Does MD (2012) On the inherent precision of mcDESPOT. Magn Reson Med. doi: 10.1002/mrm.24241, Mar 12 [Epub ahead of print]

  • Lee CC, Jack CR Jr, Grimm RC, Rossman PJ, Felmlee JP, Ehman RL, Riederer SJ (1996) Real-time adaptive motion correction in functional MRI. Magn Reson Med 36(3):436–444

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim K, Kim J, Lee S, Han Yi J, Kim SW, Ha KS, Cheong C (2001) One micrometer resolution NMR microscopy. J Magn Reson 150(2):207–213

    Article  PubMed  CAS  Google Scholar 

  • Lee J, van Gelderen P, Kuo LW, Merkle H, Silva AC, Duyn JH (2011) T2*-based fiber orientation mapping. Neuroimage 57(1):225–234

    Article  PubMed  Google Scholar 

  • Li W, Wu B, Liu C (2011) Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 55(4):1645–1656

    Article  PubMed  Google Scholar 

  • MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12(3):340–356

    Article  PubMed  CAS  Google Scholar 

  • MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24(4):515–525

    Article  PubMed  Google Scholar 

  • Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69(3):621–636

    Google Scholar 

  • Mao W, Smith MB, Collins CM (2006) Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med 56(4):918–922

    Article  PubMed  Google Scholar 

  • Marques JP, Maddage R, Mlynarik V, Gruetter R (2009) On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1T. Neuroimage 46(2):345–352

    Article  PubMed  Google Scholar 

  • Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281

    Article  PubMed  Google Scholar 

  • Meyer JR, Roychowdhury S, Russell EJ, Callahan C, Gitelman D, Mesulam MM (1996) Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. AJNR Am J Neuroradiol 17(9):1699–1706

    PubMed  CAS  Google Scholar 

  • Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  • Nishimura DG (2010) Principles of magnetic resonance imaging. Stanford University Press, Stanford

    Google Scholar 

  • Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR (2009) Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 62(4):943–954

    Article  PubMed  Google Scholar 

  • Oros-Peusquens AM, Laurila M, Shah NJ (2008) Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. MAGMA 21(1–2):131–147

    Article  PubMed  CAS  Google Scholar 

  • Oros-Peusquens AM, Stoecker T, Amunts K, Zilles K, Shah NJ (2010) In vivo imaging of the human brain at 1.5T with 0.6-mm isotropic resolution. Magn Reson Imaging 28(3):329–340

    Article  PubMed  Google Scholar 

  • Oshio K, Feinberg DA (1991) GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20(2):344–349

    Article  PubMed  CAS  Google Scholar 

  • Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61(1):125–135

    Article  PubMed  CAS  Google Scholar 

  • Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16(2):192–225

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Panchuelo RM, Francis ST, Schluppeck D, Bowtell RW (2012) Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7T. J Magn Reson Imaging 35(2):287–299

    Article  PubMed  Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage 9(1):165–177

    Article  PubMed  CAS  Google Scholar 

  • Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7 T. MAGMA 25:443–453, Jun 13

    Article  PubMed  Google Scholar 

  • Shah NJ, Ermer V, Oros-Peusquens AM (2011) Measuring the absolute water content of the brain using quantitative MRI. Methods Mol Biol 711:29–64

    Article  PubMed  Google Scholar 

  • Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) (1999) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Sigalovsky IS, Fischl B, Melcher JR (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32(4):1524–1537

    Article  PubMed  Google Scholar 

  • Speck O, Hennig J, Zaitsev M (2006) Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects. MAGMA 19(2):55–61

    Article  PubMed  CAS  Google Scholar 

  • Thomas DL, De Vita E, Roberts S, Turner R, Yousry TA, Ordidge RJ (2004) High-resolution fast spin echo imaging of the human brain at 4.7T: implementation and sequence characteristics. Magn Reson Med 51(6):1254–1264

    Article  PubMed  Google Scholar 

  • Thomas DL, De Vita E, Deichmann R, Turner R, Ordidge RJ (2005) 3D MDEFT imaging of the human brain at 4.7T with reduced sensitivity to radiofrequency inhomogeneity. Magn Reson Med 53(6):1452–1458

    Article  PubMed  Google Scholar 

  • Thudichum JLW (1884) A treatise on the chemical constitution of the brain. Bailliere, Tindall & Cox, London

    Google Scholar 

  • Trampel R, Heidemann RM, Turner R (2010). Anatomical imaging at 7T using 2D GRASE – a comparison with 2D TSE. Poster presented at ISMRM 18th Annual Meeting, Stockholm

    Google Scholar 

  • Trampel R, Ott DV, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21(9):2075–2081

    Article  PubMed  Google Scholar 

  • Turner R, Oros-Peusquens AM, Romanzetti S, Zilles K, Shah NJ (2008) Optimised in vivo visualisation of cortical structures in the human brain at 3T using IR-TSE. Magn Reson Imaging 26(7):935–942

    Article  PubMed  Google Scholar 

  • Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Uğurbil K, Moeller S (2009) T1 weighted brain images at 7 Tesla unbiased for proton density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46(2):432–446

    Article  PubMed  Google Scholar 

  • Vavasour IM, Whittall KP, MacKay AL, Li DKB, Vorobeychik G, Paty DW (1998) A comparison between magnetization transfer ratios and myelin water percentages in normals and multiple sclerosis patients. Magn Reson Med 40:763–768

    Article  PubMed  CAS  Google Scholar 

  • Walters NB, Egan GF, Kril JJ, Kean M, Waley P, Jenkinson M, Watson JD (2003) In vivo identification of human cortical areas using high resolution MRI: an approach to cerebral structure-function correlation. Proc Natl Acad Sci USA 100:2981–2986

    Article  PubMed  CAS  Google Scholar 

  • West J, Warntjes JB, Lundberg P (2012) Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 22(5):998–1007

    Article  PubMed  CAS  Google Scholar 

  • Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DK, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37(1):34–43

    Article  PubMed  CAS  Google Scholar 

  • Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL (2009) 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 62(3):754–762

    Article  PubMed  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10(1):135–144

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, LaMantia AS, Purves D (1991) Specialized vascularization of the primate visual cortex. J Neurosci 11(8):2622–2629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Turner, R. (2013). MRI Methods for In-Vivo Cortical Parcellation. In: Geyer, S., Turner, R. (eds) Microstructural Parcellation of the Human Cerebral Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37824-9_7

Download citation

Publish with us

Policies and ethics