Skip to main content

Database-Driven Identification of Functional Modules in the Cerebral Cortex

  • Chapter
  • First Online:
Microstructural Parcellation of the Human Cerebral Cortex
  • 1270 Accesses

Abstract

The organization of the cerebral cortex into distinct modules may be described along several dimensions, most importantly structure, connectivity and function. Functional neuroimaging provides a powerful tool for the localization of function, which allows testing hypotheses about structure-function relationships. This method is, however, intrinsically less well suited to delineate the organization of a particular brain region. While neuroimaging studies may thus test hypotheses about a functional differentiation between cortical modules, their potential for delineating those in a particular region of interest is limited. Identification of cortical modules by differences in whole-brain connectivity profiles derived from diffusion tensor imaging or resting state correlations have therefore raised much recent interest. As these approaches, however, do not carry task-related information, the functional relevance of the obtained parcellation have so far remained largely elusive.

The emergence of comprehensive databases for functional neuroimaging results provides a novel basis for delineating cortical modules by co-activation networks. Importantly, such approaches are data-driven in that they do not rely on a classification of tasks or paradigms, but merely rely on the spatial pattern of whole brain co-activation profiles. The key idea behind database-informed cortical parcellation is computing the whole-brain co-activation patterns of each individual voxel within a seed region, regardless of the ontological classification of the original experiments. Recording the co-activation likelihoods of all grey-matter voxels outside the region of interest then yields a functional co-activation matrix. This connectivity matrix may then be used to group the seed voxels in such manner, that voxels showing similar co-activation are clustered together and separated from those showing different co-activation profiles. Hereby functional modules may be identified in a data-driven fashion using task-based neuroimaging information. By assessing the functional characteristics and spatial response patterns of those experiments associated with the ensuing clusters, the derived parcellation may be directly related to network properties and task properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210(5–6):343–352. doi:10.1007/s00429-005-0025-5

    Article  CAS  Google Scholar 

  • Barnard ST, Pothen A, Simon HD (1995) A spectral algorithm for envelope reduction of sparse matrices. Numer Linear Algebra Appl 2:317–334

    Article  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Carr L, Iacoboni M, Dubeau MC, Mazziotta JC, Lenzi GL (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA 100(9):5497–5502. doi:10.1073/pnas.0935845100

    Article  PubMed  CAS  Google Scholar 

  • Cauda F, Cavanna AE, D’Agata F, Sacco K, Duca S, Geminiani GC (2011) Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci 23(10):2864–2877. doi:10.1162/jocn.2011.21624

    Article  PubMed  Google Scholar 

  • Derrfuss J, Mar RA (2009) Lost in localization: the need for a universal coordinate database. Neuroimage 48(1):1–7. doi:10.1016/j.neuroimage.2009.01.053

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Bzdok D (2011) Meta-analyses in basic and clinical neuroscience: state of the art and perspective. In: Ulmer S, Jansen O (eds) fMRI – Basics and clinical applications. 2nd edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42(2):107–121

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Rottschy C, Zilles K (2007) Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex. Brain Struct Funct 212(3–4):255–267. doi:10.1007/s00429-007-0156-y

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi:10.1002/hbm.20718

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30(18):6409–6421. doi:30/18/6409 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2011a) Activation likelihood estimation meta-analysis revisited. Neuroimage. (in press) doi:S1053-8119(11)01062-7 [pii]

    Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011b) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57(3):938–949. doi:S1053-8119(11)00509-X [pii]

    Article  PubMed  Google Scholar 

  • Evans AC, Collins DL, Milner B (1992) An MRI-based stereotactic atlas from 250 young normal subjects. Soc Neurosci Abstr 18(408)

    Google Scholar 

  • Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3(4):319–321. doi:10.1038/nrn789

    Article  PubMed  CAS  Google Scholar 

  • Franz SI, Lashley KS (1917) The retention of habits by the rat after destruction of the frontal parts of the cerebrum. Psycholobiology 1:3–18

    Article  Google Scholar 

  • Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Ann Rev Neurosci 25:221–250

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Fletcher P, Liddle PF, Frackowiak RS (1996) Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb Cortex 6(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Handl J, Knowles J, Kell DB (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15):3201–3212. doi:bti517 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Harlow MJ (1869) Recovery from the passage of an iron bar through the head. Boston Medical and Surgical Journal 3(7)

    Google Scholar 

  • Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28:100–108

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACN Computing Surveys 31(3):264–323

    Article  Google Scholar 

  • Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340. doi:10.1073/pnas.0403743101

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL, Kim SI, Saad ZS (2010) Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49(3):2375–2386. doi:S1053-8119(09)01087-8 [pii]

    Article  PubMed  Google Scholar 

  • Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009a) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29(46):14496–14505. doi:29/46/14496 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Laird AR, Lancaster JL, Fox PT (2009b) Lost in localization? The focus is meta-analysis. Neuroimage 48(1):18–20. doi:S1053-8119(09)00673-9 [pii]

    Article  PubMed  Google Scholar 

  • Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205

    Article  PubMed  Google Scholar 

  • Leslie KR, Johnson-Frey SH, Grafton ST (2004) Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage 21(2):601–607. doi:10.1016/j.neuroimage.2003.09.038

    Article  PubMed  Google Scholar 

  • Lloyd SP (1982) Quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Article  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586

    PubMed  CAS  Google Scholar 

  • Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20(8):750–756. doi:S0960-9822(10)00233-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage 47(4):1666–1677. doi:S1053-8119(09)00626-0 [pii]

    Article  PubMed  Google Scholar 

  • Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Proc Neur Inform Proc Syst 14:849–856

    Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616. doi:10.1038/nrn893

    PubMed  CAS  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Wolpert DM (2005) Motor systems. Curr Opin Neurobiol 15:623–625

    Article  PubMed  CAS  Google Scholar 

  • Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31(2):173–184. doi:10.1002/hbm.20854

    PubMed  Google Scholar 

  • Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45(2):614–626. doi:S1053-8119(08)01221-4 [pii]

    Article  PubMed  Google Scholar 

  • Saygin ZM, Osher DE, Augustinack J, Fischl B, Gabrieli JD (2011) Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 56(3):1353–1361. doi:S1053-8119(11)00265-5 [pii]

    Article  PubMed  Google Scholar 

  • Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483

    PubMed  CAS  Google Scholar 

  • Smith SM (2012) The future of FMRI connectivity. Neuroimage. doi:S1053-8119(12)00039-0 [pii]

    Google Scholar 

  • Solano-Castiella E, Schafer A, Reimer E, Turke E, Proger T, Lohmann G, Trampel R, Turner R (2011) Parcellation of human amygdala in vivo using ultra high field structural MRI. Neuroimage 58(3):741–748. doi:S1053-8119(11)00692-6 [pii]

    Article  PubMed  Google Scholar 

  • Steyvers M, Tenenbaum JB, Wagenmakers E-J, Blum B (2003) Inferring causal networks from observations and interventions. Cogn Sci 27(3):453–489. doi:10.1207/s15516709cog2703_6

    Article  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Timm NH (2002) Applied multivariate analysis. Springer, New York

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie 25:279–461

    Google Scholar 

  • Vogt S, Buccino G, Wohlschlager AM, Canessa N, Shah NJ, Zilles K, Eickhoff SB, Freund HJ, Rizzolatti G, Fink GR (2007) Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise. NeuroImage 37:1371–1383

    Article  PubMed  Google Scholar 

  • Walters NB, Eickhoff SB, Schleicher A, Zilles K, Amunts K, Egan GF, Watson JD (2007) Observer-independent analysis of high-resolution MR images of the human cerebral cortex: in vivo delineation of cortical areas. Hum Brain Mapp 28(1):1–8. doi:10.1002/hbm.20267

    Article  PubMed  Google Scholar 

  • Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proc Biol Sci 252(1333):13–18. doi:10.1098/rspb.1993.0040

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map–conception and fate. Nat Rev Neurosci 11(2):139–145. doi:nrn2776 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon B. Eickhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Eickhoff, S.B., Bzdok, D. (2013). Database-Driven Identification of Functional Modules in the Cerebral Cortex. In: Geyer, S., Turner, R. (eds) Microstructural Parcellation of the Human Cerebral Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37824-9_5

Download citation

Publish with us

Policies and ethics