Skip to main content

Molecular Pathology of Pulmonary Parasitic Diseases

  • Chapter
  • First Online:
Parasitic Diseases of the Lungs

Abstract

Diseases caused by protozoans and helminthes are some of the most common afflicting humans around the world, and yet they are some of the most scientifically neglected regarding their pathogenesis, diagnosis, and treatment. In this chapter, principles of molecular pathogenesis of the most common protozoan and helminth infections are discussed. Emphasis is placed on immunopathology (innate and adaptive immune responses), parasitic proteases, and immunomodulation by parasites. Selected protozoan and helminth infections are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearce EJ, Tarleton RL. Overview of parasitic pathogens. In: Kaufmann SHE, Sher A, Ahmed R, editors. Immunology of infectious diseases. 1st ed. Washington, DC: ASM Press; 2002. p. 39–52.

    Google Scholar 

  2. Brindley PJ, Mitreva M, Ghedin E, Lustigman S. Helminth genomics: the implications for human health. PLoS Negl Trop Dis. 2009;3:e538.

    Article  PubMed  Google Scholar 

  3. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.

    PubMed  CAS  Google Scholar 

  4. Scott P, Grencis RK. Adaptive immune effector mechanisms against intracellular protozoa and gut-dwelling nematodes. In: Kaufmann SHE, Sher A, Ahmed R, editors. Immunology of infectious diseases. Washington, DC: ASM Press; 2002. p. 235–46.

    Google Scholar 

  5. Gazzinelli RT, Wysocka M, Hieny S, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol. 1996;157:798–805.

    PubMed  CAS  Google Scholar 

  6. Bessieres MH, Swierczynski B, Cassaing S, et al. Role of IFN-gamma, TNF-alpha, IL4 and IL10 in the regulation of experimental Toxoplasma gondii infection. J Eukaryot Microbiol. 1997;44:87S.

    Article  PubMed  CAS  Google Scholar 

  7. Butcher BA, Kim L, Panopoulos AD, Watowich SS, Murray PJ, Denkers EY. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol. 2005;174:3148–52.

    PubMed  CAS  Google Scholar 

  8. Dunne DW, Pearce EJ. Immunology of hepatosplenic schistosomiasis mansoni: a human perspective. Microbes Infect. 1999;1:553–60.

    Article  PubMed  CAS  Google Scholar 

  9. Cheever AW, Yap GS. Immunologic basis of disease and disease regulation in schistosomiasis. Chem Immunol. 1997;66:159–76.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA. Immunopathology of schistosomiasis. Immunol Cell Biol. 2007;85:148–54.

    Article  PubMed  CAS  Google Scholar 

  11. Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA. IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol. 1999;162:920–30.

    PubMed  CAS  Google Scholar 

  12. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM. Immunopathogenesis of schistosomiasis. Immunol Rev. 2004;201:156–67.

    Article  PubMed  CAS  Google Scholar 

  13. Norris KA, Schrimpf JE. Biochemical analysis of the membrane and soluble forms of the complement regulatory protein of Trypanosoma cruzi. Infect Immun. 1994;62:236–43.

    PubMed  CAS  Google Scholar 

  14. Reed SL, Ember JA, Herdman DS, DiScipio RG, Hugli TE, Gigli I. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol. 1995;155:266–74.

    PubMed  CAS  Google Scholar 

  15. Pearce EJ, Hall BF, Sher A. Host-specific evasion of the alternative complement pathway by schistosomes correlates with the presence of a phospholipase C-sensitive surface molecule resembling human decay accelerating factor. J Immunol. 1990;144:2751–6.

    PubMed  CAS  Google Scholar 

  16. Da Silva RP, Hall BF, Joiner KA, Sacks DL. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J Immunol. 1989;143:617–22.

    PubMed  Google Scholar 

  17. Andrews NW, Abrams CK, Slatin SL, Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell. 1990;61:1277–87.

    Article  PubMed  CAS  Google Scholar 

  18. Sibley LD, Weidner E, Krahenbuhl JL. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature. 1985;315:416–9.

    Article  PubMed  CAS  Google Scholar 

  19. Nebl T, De Veer MJ, Schofield L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology. 2005;130(Suppl):S45–62.

    Article  PubMed  CAS  Google Scholar 

  20. Ropert C, Ferreira LR, Campos MA, et al. Macrophage signaling by glycosylphosphatidylinositol-anchored mucin-like glycoproteins derived from Trypanosoma cruzi trypomastigotes. Microbes Infect. 2002;4:1015–25.

    Article  PubMed  CAS  Google Scholar 

  21. Proudfoot L, O’Donnell CA, Liew FY. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995;25:745–50.

    Article  PubMed  CAS  Google Scholar 

  22. Carrera L, Gazzinelli RT, Badolato R, et al. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med. 1996;183:515–26.

    Article  PubMed  CAS  Google Scholar 

  23. Hunter CA, Sher A. Innate immunity to parasitic infections. In: Kaufmann SHE, Sher A, Ahmed R, editors. Immunology of infectious diseases. Washington, DC: ASM Press; 2002. p. 111–27.

    Google Scholar 

  24. Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243.

    Article  PubMed  CAS  Google Scholar 

  25. Aliberti J, Reis-e-Sousa C, Schito M, et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol. 2000;1:83–7.

    Article  PubMed  CAS  Google Scholar 

  26. Soong L, Xu JC, Grewal IS, et al. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity. 1996;4:263–73.

    Article  PubMed  CAS  Google Scholar 

  27. Finkelman FD, Shea-Donohue T, Goldhill J, et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu Rev Immunol. 1997;15:505–33.

    Article  PubMed  CAS  Google Scholar 

  28. Donaldson LE, Schmitt E, Huntley JF, Newlands GF, Grencis RK. A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth. Int Immunol. 1996;8:559–67.

    Article  PubMed  CAS  Google Scholar 

  29. Grencis RK, Entwistle GM. Production of an interferon-gamma homologue by an intestinal nematode: functionally significant or interesting artefact? Parasitology. 1997;115(Suppl):S101–6.

    Article  PubMed  Google Scholar 

  30. Diaz A, Allen JE. Mapping immune response profiles: the emerging scenario from helminth immunology. Eur J Immunol. 2007;37:3319–26.

    Article  PubMed  CAS  Google Scholar 

  31. Anthony RM, Rutitzky LI, Urban Jr JF, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7:975–87.

    Article  PubMed  CAS  Google Scholar 

  32. Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis. Science. 2002;296:490–4.

    Article  PubMed  CAS  Google Scholar 

  33. Lepenies B, Jacobs T. The role of negative costimulators during parasitic infections. Endocr Metab Immune Disord Drug Targets. 2008;8:279–88.

    Article  PubMed  CAS  Google Scholar 

  34. Johnston MJ, MacDonald JA, McKay DM. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology. 2009;136:125–47.

    Article  PubMed  CAS  Google Scholar 

  35. Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33:601–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 2009;167:1–11.

    Article  PubMed  CAS  Google Scholar 

  37. Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP. Proteinases and associated genes of parasitic helminths. Adv Parasitol. 1999;43:161–266.

    Article  PubMed  CAS  Google Scholar 

  38. Lackey A, James ER, Sakanari JA, et al. Extracellular proteases of Onchocerca. Exp Parasitol. 1989;68:176–85.

    Article  PubMed  CAS  Google Scholar 

  39. Park H, Kim SI, Hong KM, et al. Characterization and classification of five cysteine proteinases expressed by Paragonimus westermani adult worm. Exp Parasitol. 2002;102:143–9.

    Article  PubMed  CAS  Google Scholar 

  40. Na BK, Lee HJ, Cho SH, et al. Expression of cysteine proteinase of Clonorchis sinensis and its use in serodiagnosis of clonorchiasis. J Parasitol. 2002;88:1000–6.

    PubMed  CAS  Google Scholar 

  41. Shin MH, Lee SY. Proteolytic activity of cysteine protease in excretory-secretory product of Paragonimus westermani newly excysted metacercariae pivotally regulates IL-8 production of human eosinophils. Parasite Immunol. 2000;22:529–33.

    Article  PubMed  CAS  Google Scholar 

  42. Curwen RS, Wilson RA. Invasion of skin by schistosome cercariae: some neglected facts. Trends Parasitol. 2003;19:63–6; discussion 66–8 [see comment].

    Article  PubMed  Google Scholar 

  43. McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Ann Rev Pathol Mechan Dis. 2006;1:497–536.

    Article  CAS  Google Scholar 

  44. Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins. Int J Parasitol. 2003;33:1291–302.

    Article  PubMed  CAS  Google Scholar 

  45. Manoury B, Gregory WF, Maizels RM, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr Biol. 2001;11:447–51.

    Article  PubMed  CAS  Google Scholar 

  46. Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;276:33293–6.

    Article  PubMed  CAS  Google Scholar 

  47. Bruchhaus I, Jacobs T, Leippe M, Tannich E. Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes. Mol Microbiol. 1996;22:255–63.

    Article  PubMed  CAS  Google Scholar 

  48. Hill DE, Chirukandoth S, Dubey JP. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim Health Res Rev. 2005;6:41–61.

    Article  PubMed  Google Scholar 

  49. Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996;84:933–9.

    Article  PubMed  CAS  Google Scholar 

  50. Soldati-Favre D. Molecular dissection of host cell invasion by the apicomplexans: the glideosome. Parasite. 2008;15:197–205.

    Article  PubMed  CAS  Google Scholar 

  51. Sibley LD. Intracellular parasite invasion strategies. Science. 2004;304:248–53.

    Article  PubMed  CAS  Google Scholar 

  52. Dowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol. 2004;7:388–96.

    Article  PubMed  CAS  Google Scholar 

  53. Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science. 2002;298:837–40.

    Article  PubMed  CAS  Google Scholar 

  54. Lovett JL, Marchesini N, Moreno SN, Sibley LD. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J Biol Chem. 2002;277:25870–6.

    Article  PubMed  CAS  Google Scholar 

  55. Sinai AP, Joiner KA. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol. 2001;154:95–108.

    Article  PubMed  CAS  Google Scholar 

  56. Aliberti J, Jankovic D, Sher A. Turning it on and off: regulation of dendritic cell function in Toxoplasma gondii infection. Immunol Rev. 2004;201:26–34.

    Article  PubMed  CAS  Google Scholar 

  57. Sher A, Collazzo C, Scanga C, Jankovic D, Yap G, Aliberti J. Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol Res. 2003;27:521–8.

    Article  PubMed  CAS  Google Scholar 

  58. Fadul CE, Channon JY, Kasper LH. Survival of immunoglobulin G-opsonized Toxoplasma gondii in nonadherent human monocytes. Infect Immun. 1995;63:4290–4.

    PubMed  CAS  Google Scholar 

  59. Eichinger D. A role for a galactose lectin and its ligands during encystment of Entamoeba. J Eukaryot Microbiol. 2001;48:17–21.

    Article  PubMed  CAS  Google Scholar 

  60. Reed SL, Gigli I. Lysis of complement-sensitive Entamoeba histolytica by activated terminal complement components. Initiation of complement activation by an extracellular neutral cysteine proteinase. J Clin Invest. 1990;86:1815–22.

    Article  PubMed  CAS  Google Scholar 

  61. Ravdin JI, Moreau F, Sullivan JA, Petri Jr WA, Mandell GL. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Infect Immun. 1988;56:1505–12.

    PubMed  CAS  Google Scholar 

  62. Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, Petri Jr WA. Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis. 2001;183:1787–93.

    Article  PubMed  CAS  Google Scholar 

  63. Salata RA, Martinez-Palomo A, Murray HW, et al. Patients treated for amebic liver abscess develop cell-mediated immune responses effective in vitro against Entamoeba histolytica. J Immunol. 1986;136:2633–9.

    PubMed  CAS  Google Scholar 

  64. Denis M, Chadee K. Human neutrophils activated by interferon-gamma and tumour necrosis factor-alpha kill Entamoeba histolytica trophozoites in vitro. J Leukoc Biol. 1989;46:270–4.

    PubMed  CAS  Google Scholar 

  65. Weiss LM, Schwartz DA. Microsporidiosis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. 2nd ed. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1126–40.

    Google Scholar 

  66. Xu Y, Weiss LM. The microsporidian polar tube: a highly specialised invasion organelle. Int J Parasitol. 2005;35:941–53.

    Article  PubMed  Google Scholar 

  67. Xu Y, Takvorian PM, Cali A, Orr G, Weiss LM. Glycosylation of the major polar tube protein of Encephalitozoon hellem, a microsporidian parasite that infects humans. Infect Immun. 2004;72:6341–50.

    Article  PubMed  CAS  Google Scholar 

  68. Peek R, Delbac F, Speijer D, et al. Carbohydrate moieties of microsporidian polar tube proteins are targeted by immunoglobulin G in immunocompetent individuals. Infect Immun. 2005;73:7906–13.

    Article  PubMed  CAS  Google Scholar 

  69. Peuvel I, Peyret P, Metenier G, Vivares CP, Delbac F. The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi. Mol Biochem Parasitol. 2002;122:69–80.

    Article  PubMed  CAS  Google Scholar 

  70. Franzen C, Muller A, Hartmann P, Salzberger B. Cell invasion and intracellular fate of Encephalitozoon cuniculi (Microsporidia). Parasitology. 2005;130:285–92.

    Article  PubMed  CAS  Google Scholar 

  71. Scanlon M, Shaw AP, Zhou CJ, Visvesvara GS, Leitch GJ. Infection by microsporidia disrupts the host cell cycle. J Eukaryot Microbiol. 2000;47:525–31.

    Article  PubMed  CAS  Google Scholar 

  72. Mac Kenzie WR, Hoxie NJ, Proctor ME, et al. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994;331:161–7 [see comment] [erratum appears in N Engl J Med. 1994;331(15):1035].

    Article  PubMed  CAS  Google Scholar 

  73. Bushen OY, Lima AAM, Guerrant RL. Cryptosporidiosis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. 2nd ed. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1003–14.

    Google Scholar 

  74. Kirkpatrick BD, Daniels MM, Jean SS, et al. Cryptosporidiosis stimulates an inflammatory intestinal response in malnourished Haitian children. J Infect Dis. 2002;186:94–101.

    Article  PubMed  Google Scholar 

  75. Argenzio RA, Rhoads JM, Armstrong M, Gomez G. Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology. 1994;106:1418–28 [see comment].

    PubMed  CAS  Google Scholar 

  76. Kandil HM, Berschneider HM, Argenzio RA. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Gut. 1994;35:934–40.

    Article  PubMed  CAS  Google Scholar 

  77. Seydel KB, Zhang T, Champion GA, et al. Cryptosporidium parvum infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infect Immun. 1998;66:2379–82.

    PubMed  CAS  Google Scholar 

  78. Robinson P, Okhuysen PC, Chappell CL, et al. Substance P expression correlates with severity of diarrhea in cryptosporidiosis. J Infect Dis. 2003;188:290–6.

    Article  PubMed  CAS  Google Scholar 

  79. Hashim A, Mulcahy G, Bourke B, Clyne M. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immun. 2006;74:99–107.

    Article  PubMed  CAS  Google Scholar 

  80. Abrahamsen MS, Templeton TJ, Enomoto S, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304:441–5.

    Article  PubMed  CAS  Google Scholar 

  81. White AC, Robinson P, Okhuysen PC, et al. Interferon-gamma expression in jejunal biopsies in experimental human cryptosporidiosis correlates with prior sensitization and control of oocyst excretion. J Infect Dis. 2000;181:701–9.

    Article  PubMed  CAS  Google Scholar 

  82. Robinson P, Okhuysen PC, Chappell CL, et al. Expression of IL-15 and IL-4 in IFN-gamma-independent control of experimental human Cryptosporidium parvum infection. Cytokine. 2001;15:39–46.

    Article  PubMed  CAS  Google Scholar 

  83. Nutman TB, Kazura JW. Filariasis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1152–62.

    Google Scholar 

  84. Babu S, Nutman TB. Proinflammatory cytokines dominate the early immune response to filarial parasites. J Immunol. 2003;171:6723–32.

    PubMed  CAS  Google Scholar 

  85. Graham SP, Trees AJ, Collins RA, et al. Down-regulated lymphoproliferation coincides with parasite maturation and with the collapse of both gamma interferon and interleukin-4 responses in a bovine model of onchocerciasis. Infect Immun. 2001;69:4313–9.

    Article  PubMed  CAS  Google Scholar 

  86. Steel C, Nutman TB. CTLA-4 in filarial infections: implications for a role in diminished T cell reactivity. J Immunol. 2003;170:1930–8.

    PubMed  CAS  Google Scholar 

  87. King CL, Mahanty S, Kumaraswami V, et al. Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. J Clin Invest. 1993;92:1667–73.

    Article  PubMed  CAS  Google Scholar 

  88. Hise AG, Gillette-Ferguson I, Pearlman E. The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell Microbiol. 2004;6:97–104.

    Article  PubMed  CAS  Google Scholar 

  89. Taylor MJ. A new insight into the pathogenesis of filarial disease. Curr Mol Med. 2002;2:299–302.

    Article  PubMed  CAS  Google Scholar 

  90. Taylor MJ, Cross HF, Bilo K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med. 2000;191:1429–36.

    Article  PubMed  CAS  Google Scholar 

  91. Eberhard ML. Zoonotic filariasis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1189–203.

    Google Scholar 

  92. Theis JH. Public health aspects of dirofilariasis in the United States. Vet Parasitol. 2005;133:157–80.

    Article  PubMed  CAS  Google Scholar 

  93. Siddiqui AA, Genta RM, Berk LB. Strongyloidiasis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1274–85.

    Google Scholar 

  94. Ashton FT, Li J, Schad GA. Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol. 1999;84:297–316.

    Article  PubMed  CAS  Google Scholar 

  95. Gomez Gallego S, Loukas A, Slade RW, et al. Identification of an astacin-like metallo-proteinase transcript from the infective larvae of Strongyloides stercoralis. Parasitol Int. 2005;54:123–33.

    Article  PubMed  CAS  Google Scholar 

  96. Genta RM. Dysregulation of strongyloidiasis: a new hypothesis. Clin Microbiol Rev. 1992;5:345–55.

    PubMed  CAS  Google Scholar 

  97. Escobedo G, Roberts CW, Carrero JC, Morales-Montor J. Parasite regulation by host hormones: an old mechanism of host exploitation? Trends Parasitol. 2005;21:588–93.

    Article  PubMed  CAS  Google Scholar 

  98. Siddiqui AA, Stanley CS, Berk SL. A cDNA encoding the highly immunodominant antigen of Strongyloides stercoralis: gamma-subunit of isocitrate dehydrogenase (NAD+). Parasitol Res. 2000;86:279–83.

    Article  PubMed  CAS  Google Scholar 

  99. Carvalho EM, Da Fonseca Porto A. Epidemiological and clinical interaction between HTLV-1 and Strongyloides stercoralis. Parasite Immunol. 2004;26:487–97.

    Article  PubMed  CAS  Google Scholar 

  100. Gabet AS, Mortreux F, Talarmin A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene. 2000;19:4954–60.

    Article  PubMed  CAS  Google Scholar 

  101. Velez ID, Ortega JE, Velasquez LE. Paragonimiasis: a view from Colombia. Clin Chest Med. 2002;23:421–31.

    Article  PubMed  Google Scholar 

  102. Maclean JD, Cross J, Mahanty S. Liver, lung, and intestinal fluke infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1349–69.

    Google Scholar 

  103. Lee EG, Na BK, Bae YA, et al. Identification of immunodominant excretory-secretory cysteine proteases of adult Paragonimus westermani by proteome analysis. Proteomics. 2006;6:1290–300.

    Article  PubMed  CAS  Google Scholar 

  104. Jin Y, Lee JC, Choi IY, Kim EA, Shin MH, Kim WK. Excretory-secretory products produced by Paragonimus westermani differentially regulate the nitric oxide production and viability of microglial cells. Int Arch Allergy Immunol. 2006;139:16–24.

    Article  PubMed  CAS  Google Scholar 

  105. Shin MH, Chung YB, Kita H. Degranulation of human eosinophils induced by Paragonimus westermani-secreted protease. Korean J Parasitol. 2005;43:33–7.

    Article  PubMed  Google Scholar 

  106. Min DY, Lee YA, Ryu JS, et al. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol. 2004;133:357–64.

    Article  PubMed  CAS  Google Scholar 

  107. Li AH, Na BK, Kong Y, Cho SH, Zhao QP, Kim TS. Molecular cloning and characterization of copper/zinc-superoxide dismutase of Paragonimus westermani. J Parasitol. 2005;91:293–9.

    Article  PubMed  CAS  Google Scholar 

  108. Matsumoto N, Mukae H, Nakamura-Uchiyama F, et al. Elevated levels of thymus and activation-regulated chemokine (TARC) in pleural effusion samples from patients infested with Paragonimus westermani. Clin Exp Immunol. 2002;130:314–8.

    Article  PubMed  CAS  Google Scholar 

  109. Ross AG, Bartley PB, Sleigh AC, et al. Schistosomiasis. N Engl J Med. 2002;346:1212–20 [see comment].

    Article  PubMed  Google Scholar 

  110. King CH. Schistosomiasis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1341–8.

    Google Scholar 

  111. King CH. Acute and chronic schistosomiasis. Hosp Pract (Office Edition). 1991;26:117–30.

    CAS  Google Scholar 

  112. Cheever AW. Schistosomiasis. Infection versus disease and hypersensitivity versus immunity. Am J Pathol. 1993;142:699–702.

    PubMed  CAS  Google Scholar 

  113. Jankovic D, Kullberg MC, Noben-Trauth N, et al. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J Immunol. 1999;163:337–42.

    PubMed  CAS  Google Scholar 

  114. Hokke CH, Yazdanbakhsh M. Schistosome glycans and innate immunity. Parasite Immunol. 2005;27:257–64.

    Article  PubMed  CAS  Google Scholar 

  115. Stadecker MJ, Asahi H, Finger E, Hernandez HJ, Rutitzky LI, Sun J. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol Rev. 2004;201:168–79.

    Article  PubMed  CAS  Google Scholar 

  116. Berriman M, Haas BJ, LoVerde PT, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–8.

    Article  PubMed  CAS  Google Scholar 

  117. Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium, Zhou Y, et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature. 2009;460:345–51.

    Article  CAS  Google Scholar 

  118. Thompson RC, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol. 2002;18:452–7.

    Article  PubMed  Google Scholar 

  119. Schantz PM, Kern P, Brunetti E. Echinococcosis. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. Philadelphia: Elsevier/Churchill Livingstone; 2006. p. 1304–26.

    Google Scholar 

  120. Olano JP. Chapter 42: Parasites. In: Zander DS, Popper H, Jagirdar J, Cagle PT, Barrios R, editors. Molecular pathology of lung diseases. New York: Springer; 2008.

    Google Scholar 

Download references

Acknowledgment

Sections of this chapter are reprinted with permission from Olano JP. Parasites. In: Zander DS, Popper H, Jagirdar J, Cagle PT, Barrios R, eds. Molecular Pathology of Lung Diseases. New York, NY: Springer; 2008:chap 42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Olano MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olano, J.P. (2013). Molecular Pathology of Pulmonary Parasitic Diseases. In: Barrios, R., Haque, A. (eds) Parasitic Diseases of the Lungs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37609-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37609-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37608-5

  • Online ISBN: 978-3-642-37609-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics