Skip to main content

On the Potential for Improved Measurement in the Human and Social Sciences

  • Conference paper
  • First Online:
Pacific Rim Objective Measurement Symposium (PROMS) 2012 Conference Proceeding

Abstract

Geometry is the most ancient branch of physics. All linear measurement is essentially a form of practical geometry. Following Maxwell’s method of drawing analogies from geometry, Rasch conceptualized measurement models as analogous to scientific laws. Rasch likely absorbed Maxwell’s method via close and prolonged interactions with colleagues known for their use of it. Examination of the common form of the relationships posited in the Pythagorean theorem, multiplicative natural laws, and Rasch models leads to a new perspective on the potential unity of science. To be fully realized in the social sciences, Rasch’s measurement ideas need to be dissociated from statistics and IRT, and instead rooted in the Maxwellian sources Rasch actually drew from. Following through on the method of analogy from geometry may make human and social measurement more intuitive and useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, J. R. (1985). Data, instruments, and theory: A dialectical approach to understanding science. Princeton: Princeton University Press.

    Google Scholar 

  • Andrich, D. (1988). Rasch models for measurement (Sage University paper series on quantitative applications in the social sciences, Vol. 07–068). Beverly Hills: Sage Publications.

    Google Scholar 

  • Bejar, I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., & Revuelta, J. (2003). A feasibility study of on-the-fly item generation in adaptive testing. The Journal of Technology, Learning, and Assessment, 2(3), 1–29.

    Google Scholar 

  • Black, M. (1962). Models and metaphors. Ithaca: Cornell University Press.

    Google Scholar 

  • Boumans, M. (2005). How economists model the world into numbers. New York: Routledge.

    Google Scholar 

  • Burdick, D. S., Stone, M. H., & Stenner, A. J. (2006). The combined Gas Law and a Rasch Reading Law. Rasch Measurement Transactions, 20(2), 1059–1060.

    Google Scholar 

  • Burdick, D. S., Stenner, A. J., & Kyngdon, A. (2010, Summer). From model to measurement with dichotomous items. Journal of Applied Measurement, 11(2), 112–121.

    Google Scholar 

  • Burtt, E. A. (1954). The metaphysical foundations of modern physical science (Rev. ed.). Garden City: Doubleday Anchor.

    Google Scholar 

  • Crease, R. (2004). The greatest equations ever. Physics World, 17(10), 19.

    Google Scholar 

  • Dawson, T. L., Fischer, K. W., & Stein, Z. (2006). Reconsidering qualitative and quantitative research approaches: A cognitive developmental perspective. New Ideas in Psychology, 24, 229–239.

    Article  Google Scholar 

  • Einstein, A. (1922). Geometry and experience. In G. B. Jeffery, W. Perrett (Trans.), Sidelights on relativity (pp. 12–23). London: Methuen & Co., Ltd.

    Google Scholar 

  • Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application to abstract reasoning. Psychological Methods, 3(3), 380–396.

    Article  Google Scholar 

  • Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

    Article  Google Scholar 

  • Fisher, W. P., Jr. (2008). A predictive theory for the calibration of physical functioning patient survey items. Presented at the second conference on patient reported outcome measurement information systems, Bethesda: NIH and NIAMS, March 2–5.

    Google Scholar 

  • Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1). http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

  • Green, K. E., & Kluever, R. C. (1992). Components of item difficulty of Raven’s matrices. The Journal of General Psychology, 119, 189–199.

    Article  Google Scholar 

  • Heilbron, J. L. (1993). Weighing imponderables and other quantitative science around 1800. Historical Studies in the Physical and Biological Sciences, 24(Supplement), Pt. I, 1–337.

    Google Scholar 

  • Heilbron, J. L. (1998). Geometry civilized: History, culture, and technique. Oxford: Clarendon.

    Google Scholar 

  • Hesse, M. (1961). Forces and fields: A study of action at a distance in the history of physics. London: Thomas Nelson and Sons.

    Google Scholar 

  • Isacoff, S. M. (2001). Temperament: The idea that solved music’s greatest riddle. New York: Knopf.

    Google Scholar 

  • Jaeger, R. M. (1973). The national test equating study in reading (The Anchor Test Study). Measurement in Education, 4, 1–8.

    Google Scholar 

  • Klein, H. A. (1974). The world of measurements: Masterpieces, mysteries and muddles of metrology. New York: Simon & Schuster.

    Google Scholar 

  • Maor, E. (1994). E: The story of a number. Princeton: Princeton University Press.

    Google Scholar 

  • Maxwell, J. C. (1920/1876). Matter and motion (J. Larmor, Ed.). New York: The Macmillan Co.

    Google Scholar 

  • Maxwell, J. C. (1965/1890). The scientific papers of James Clerk Maxwell (W. D. Niven, Ed.). New York: Dover Publications.

    Google Scholar 

  • McMullin, E. (2002). The origins of the field concept in physics. Physics in Perspective, 4(1), 13–39.

    Article  Google Scholar 

  • Mundy, B. (1986). On the general theory of meaningful representation. Synthese, 67(3), 391–437.

    Article  Google Scholar 

  • Narens, L. (2002). A meaningful justification for the representational theory of measurement. Journal of Mathematical Psychology, 46(6), 746–768.

    Article  Google Scholar 

  • Nersessian, N. J. (2002). Maxwell and “the method of physical analogy”: Model-based reasoning, generic abstraction, and conceptual change. In D. Malament (Ed.), Essays in the history and philosophy of science and mathematics (pp. 129–166). Lasalle: Open Court.

    Google Scholar 

  • Pledge, H. T. (1939). Science since 1500: A short history of mathematics, physics, chemistry, biology. London: His Majesty’s Stationery Office.

    Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen: Danmarks Paedogogiske Institut.

    Google Scholar 

  • Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In J. Neyman (Ed.), Proceedings of the fourth Berkeley symposium on mathematical statistics and probability (Contributions to biology and problems of medicine, Vol. IV, pp. 321–333). Berkeley: University of California Press.

    Google Scholar 

  • Rasch, G. (2010/1972). Retirement lecture of 9 March 1972: Objectivity in social sciences: A method problem (C. Kreiner, Trans.). Rasch Measurement Transactions, 24(1), 1252–1272.

    Google Scholar 

  • Rautio, J. C. (2005). Maxwell’s legacy. IEEE Microwave Magazine, 6(2), 46–53.

    Article  Google Scholar 

  • Rentz, R. R., & Bashaw, W. L. (1977). The National Reference Scale for Reading: An application of the Rasch model. Journal of Educational Measurement, 14(2), 161–179.

    Article  Google Scholar 

  • Stenner, A. J. (2001). The Lexile Framework: A common metric for matching readers and texts. California School Library Journal, 25(1), 41–42.

    Google Scholar 

  • Stenner, A. J., & Stone, M. (2003). Item specification vs. item banking. Rasch Measurement Transactions, 17(3), 929–930.

    Google Scholar 

  • Stenner, A. J., & Smith, M., III. (1982). Testing construct theories. Perceptual and Motor Skills, 55, 415–426.

    Google Scholar 

  • Stenner, A. J., Smith, M., III, & Burdick, D. S. (1983, Winter). Toward a theory of construct definition. Journal of Educational Measurement, 20(4), 305–316.

    Article  Google Scholar 

  • Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are Lexile text measures? Journal of Applied Measurement, 7(3), 307–322.

    Google Scholar 

  • Stigler, S. (1986). The history of statistics: The measurement of uncertainty before 1900. Cambridge: Harvard University Press.

    Google Scholar 

  • Taagepera, R. (2008). Making social sciences more scientific: The need for predictive models. New York: Oxford University Press.

    Book  Google Scholar 

  • Turner, J. (1955). Maxwell on the method of physical analogy. The British Journal for the Philosophy of Science, 6, 226–238.

    Article  Google Scholar 

  • Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wilson, M. (2008). Cognitive diagnosis using item response models. Zeitschrift Für Psychologie/Journal of Psychology, 216(2), 74–88.

    Article  Google Scholar 

  • Wilson, M. (2013). Seeking a balance between the statistical and scientific elements in psychometrics. Psychometrika, 78(2), 211–236.

    Google Scholar 

  • Wright, B. D. (1997). A history of social science measurement. Educational Measurement: Issues and Practice, 16(4), 33–45, 52.

    Article  Google Scholar 

  • Wright, B. D., & Stone, M. H. (1979). Best test design: Rasch measurement. Chicago: MESA Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Fisher Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisher, W.P., Stenner, A.J. (2013). On the Potential for Improved Measurement in the Human and Social Sciences. In: Zhang, Q., Yang, H. (eds) Pacific Rim Objective Measurement Symposium (PROMS) 2012 Conference Proceeding. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37592-7_1

Download citation

Publish with us

Policies and ethics