Skip to main content

Mean-Field Description of Multicomponent Exciton-Polariton Superfluids

  • Chapter
Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

  • 1868 Accesses

Abstract

This is a review of spin-dependent (polarization) properties of multicomponent exciton-polariton condensates in conditions when quasi-equilibrium mean-field Gross-Pitaevskii description can be applied. Mainly two-component (spin states ±1) polariton condensates are addressed, but some properties of four-component exciton condensates, having both the bright (spin ±1) and the dark (spin ±2) components, are discussed. Change of polarization state of the condensate and phase transitions in applied Zeeman field are described. The properties of fractional vortices are given, in particular, I present recent results on the warping of the field around half-vortices in the presence of longitudinal-transverse splitting of bare polariton bands, and discuss the geometrical features of warped half-vortices (in the framework of the lemon, monstar, and star classification).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The concentration of quasiparticles with the energy ϵ(k) is given by ∫(2π)−2[exp{ϵ(k)/T}−1]−1 d 2 k and the integral diverges logarithmically for small k when ϵ(k)∝k 2.

  2. 2.

    The case of the total spin 1 is irrelevant since the orbital wave function of colliding bosons is antisymmetric and it cannot be realized within the condensate.

  3. 3.

    Note, however, that this does not imply that a single vortex gives an absolute minimum of the H in the corresponding topological sector. For example, the integer vortex (1,0) can be unstable with respect to decay into the pair of \(({\frac{1}{2}},{\frac{1}{2}})\) and \(({\frac{1}{2}},-{\frac{1}{2}})\) half-vortices for m l <m t (see Sect. 4.3.2).

  4. 4.

    The tangents of polarization lines define by the direction of the main axis of polarization ellipse in each point.

  5. 5.

    Note that for the monstar all polarization lines residing within the sector −ϕ m <ϕ<ϕ m terminate in the vortex center, but only three of them are straight, i.e., are having nonzero inclination at r→0 (see [37] for the details).

References

  1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  3. C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Nature 450, 526 (2007)

    Article  ADS  Google Scholar 

  4. J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Grundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, G.B.H. von Högersthal, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 101, 136409 (2008)

    Article  ADS  Google Scholar 

  5. E. Wertz, L. Ferrier, D.D. Solnyshkov, P. Senellart, D. Bajoni, A. Miard, A. Lemaître, G. Malpuech, J. Bloch, Appl. Phys. Lett. 95, 051108 (2009)

    Article  ADS  Google Scholar 

  6. M. Wouters, I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007)

    Article  ADS  Google Scholar 

  7. M. Wouters, I. Carusotto, C. Ciuti, Phys. Rev. B 77, 115340 (2007)

    Article  ADS  Google Scholar 

  8. J. Keeling, N.G. Berloff, Phys. Rev. Lett. 100, 250401 (2008)

    Article  ADS  Google Scholar 

  9. M.O. Borgh, J. Keeling, N.G. Berloff, Phys. Rev. B 81, 235302 (2010)

    Article  ADS  Google Scholar 

  10. I.L. Aleiner, B.L. Altshuler, Y.G. Rubo, Phys. Rev. B 85, 121301(R) (2012)

    Article  ADS  Google Scholar 

  11. I.A. Shelykh, Y.G. Rubo, G. Malpuech, D.D. Solnyshkov, A. Kavokin, Phys. Rev. Lett. 97, 066402 (2006)

    Article  ADS  Google Scholar 

  12. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  13. T. Ohmi, K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998)

    Article  ADS  Google Scholar 

  14. A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Y.G. Rubo, A.V. Kavokin, I.A. Shelykh, Phys. Lett. A 358, 227 (2006)

    Article  ADS  MATH  Google Scholar 

  16. J. Keeling, Phys. Rev. B 78, 205316 (2008)

    Article  ADS  Google Scholar 

  17. A.V. Larionov, V.D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, A. Forchel, Phys. Rev. Lett. 105, 256401 (2010)

    Article  ADS  Google Scholar 

  18. A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957). Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  19. V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1970)

    MathSciNet  ADS  Google Scholar 

  20. V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972)

    ADS  Google Scholar 

  21. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  22. J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)

    Article  ADS  Google Scholar 

  23. Y.G. Rubo, Phys. Rev. Lett. 99, 106401 (2007)

    Article  ADS  Google Scholar 

  24. G.E. Volovik, The Universe in a Helium Droplet. The International Series of Monographs on Physics, vol. 117 (Oxford University Press, London, 2003)

    MATH  Google Scholar 

  25. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  26. K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  27. H. Flayac, I.A. Shelykh, D.D. Solnyshkov, G. Malpuech, Phys. Rev. B 81, 045318 (2010)

    Article  ADS  Google Scholar 

  28. M. Toledo Solano, Y.G. Rubo, Phys. Rev. B 82, 127301 (2010)

    Article  ADS  Google Scholar 

  29. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1989), Sect. 3.4

    Google Scholar 

  30. T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, Phys. Rev. B 75, 241301 (2007)

    Article  ADS  Google Scholar 

  31. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, England, 1995), Sect. 9.3

    Book  Google Scholar 

  32. M. Toledo Solano, Y.G. Rubo, J. Phys. Conf. Ser. 210, 012024 (2010)

    Article  ADS  Google Scholar 

  33. G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski, Phys. Rev. B 59, 5082 (1999)

    Article  ADS  Google Scholar 

  34. M. Toledo Solano, M.E. Mora-Ramos, Y.G. Rubo, unpublished

    Google Scholar 

  35. J.F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, Bristol, 1999)

    MATH  Google Scholar 

  36. M.S. Soskin, M.V. Vasnetsov, Prog. Opt. 42, 219 (2001)

    Article  Google Scholar 

  37. M.R. Dennis, K. O’Holleran, M.J. Padgett, Prog. Opt. 53, 293 (2009)

    Article  Google Scholar 

  38. M.V. Berry, J.H. Hannay, J. Phys. A 10, 1809 (1977)

    Article  ADS  Google Scholar 

  39. J.F. Nye, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 389, 279 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  40. T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Phys. Rev. Lett. 101, 187401 (2008)

    Article  ADS  Google Scholar 

  41. J. Keeling, N.G. Berloff, arXiv:1102.5302

  42. E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK, 2005)

    Google Scholar 

  43. L.V. Butov, A.C. Gossard, D.S. Chemla, Nature (London) 418, 751 (2002)

    Article  ADS  Google Scholar 

  44. M. Hagn, A. Zrenner, G. Böhm, G. Weimann, Appl. Phys. Lett. 67, 232 (1995)

    Article  ADS  Google Scholar 

  45. L.V. Butov, A.I. Filin, Phys. Rev. B 58, 1980 (1998)

    Article  ADS  Google Scholar 

  46. Z. Vörös, R. Balili, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 94, 226401 (2005)

    Article  ADS  Google Scholar 

  47. L.V. Butov, J. Phys. Condens. Matter 19, 295202 (2007)

    Article  Google Scholar 

  48. J.R. Leonard, Y.Y. Kuznetsova, S. Yang, L.V. Butov, T. Ostatnicky, A. Kavokin, A.C. Gossard, Nano Lett. 9, 4204 (2009)

    Article  ADS  Google Scholar 

  49. Y.G. Rubo, A.V. Kavokin, Phys. Rev. B 84, 045309 (2011)

    Article  ADS  Google Scholar 

  50. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Phys. Rev. B 58, 7926 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by DGAPA-UNAM under the project No. IN112310 and by the EU FP7 IRSES project POLAPHEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Rubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubo, Y.G. (2013). Mean-Field Description of Multicomponent Exciton-Polariton Superfluids. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_4

Download citation

Publish with us

Policies and ethics