Skip to main content

Conclusions and Perspectives

  • Chapter
  • First Online:
Surface Tension in Microsystems

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 2373 Accesses

Abstract

These general conclusions fall into three parts: a summary of the contributions of this book, current trends in the field of mechanical applications of surface tension and related perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.micromast.be, 2012–2017, IAP project funded by Belspo—http://www.belspo.be/IAP/.

References

  1. G. Arutinov, E.C.P. Smits, M. Mastrangeli, G. van Eck, J. van den Brand, H.F.M. Schoo, A. Dietzel, Capillary self-alignment of mesoscopic foil components for sensor-systems-in-foils. J. Micromech. Microeng. 22, 115022 (2012)

    Google Scholar 

  2. J. Berthier, S. Mermoz, K. Brakke, L. Sanchez, C. Frétigny, L. Di Cioccio, Capillary self-alignment of polygonal chips: a generalization for the shift-restoring force. Microfluid. Nanofluid. 13, 461–468 (2012)

    Google Scholar 

  3. J. Bico, B. Roman, L. Moulin, A. Boudaoud, Elastocapillary coalescence in wet hair. Nature 432, 690 (2004)

    Article  Google Scholar 

  4. T. Cambau, J. Bico, E. Reyssat, Capillary rise between flexible walls. EPL 96(7), 11047–24001 (2011)

    Google Scholar 

  5. H. Cooray, P. Cicuta, D. Vella, The capillary interaction between two vertical cylinders. J. Phys. Condens. Matter 24, 284104 (2012)

    Article  Google Scholar 

  6. J.-H. Dirks, W. Federle, Fluid-based adhesion in insects—principles and challenges. Soft Matter. 7, 11047–11053 (2011)

    Google Scholar 

  7. C. Elbuken, T. Glawdel, D. Chan, C.L. Ren, Detection of microdroplet size and speed using capacitive sensors. Sens. Actuators, A 171(2), 55–62 (2011)

    Google Scholar 

  8. M.A. Fortes, Deformation of solid surfaces due to capillary forces. J. Colloid Interface Sci. 100(1), 17–26 (1984)

    Google Scholar 

  9. F. Gabrieli, P. Lambert, S. Cola, F. Calvetti, Micromechanical modelling of erosion due to evaporation in a partially wet granular slope. Int. J. Numer. Anal. Meth. Geomech. 36, 918–943 (2012)

    Google Scholar 

  10. M. Gaudet, S. Arscott, Optical actuation of microelectromechanical systems using photoelectrowetting. Appl. Phys. Lett. 100(22), 224103–224103-4 (2012)

    Google Scholar 

  11. E. Hendarto, Y.B. Gianchandani, Marangoni-driven micromotor in liquid medium, in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th, international, 2011, pp. 246–249

    Google Scholar 

  12. Y. Ikezoe, G. Washino, T. Uemura, S. Kitagawa, H. Matsui, Autonomous motors of a meta-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081 (2012)

    Google Scholar 

  13. S.H. Kang, B. Pokroy, L. Mahadevan, J. Aizenberg, Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction. ACS Nano 4(11), 6323–6331 (2010)

    Google Scholar 

  14. C.R. Knospe, Capillary force actuation: a mechatronic perspective, ed. by E. Eleftheriou, S.O.R. Moheimani. Control Technologies for Emerging Micro and Nanoscale Systems, in Lecture Notes in Control and Information Sciences, vol. 413 (Springer, Berlin, 2011), pp. 201–218

    Google Scholar 

  15. C.R. Knospe, H. Haj-Hariri, Capillary force actuators: modeling, dynamics, and equilibria. Mechatronics 22(3), 251–256 (2012)

    Google Scholar 

  16. P.A. Kralchevsky, K. Nagayama, Particles et Fluid Interfaces and Membranes (Elsevier, New York, 2001)

    Google Scholar 

  17. G.R. Lester, Contact angles of liquids at deformable solid surfaces. J. Colloid Sci. 16, 315–326 (1961)

    Article  Google Scholar 

  18. C.H. Mastrangelo, C.H. Hsu, Mechanical stability and adhesion of microstructures under capillary forces—Part I: basic theory. J. Microelectromech. Syst. 2(1), 33–43 (1993)

    Article  Google Scholar 

  19. C.H. Mastrangelo, C.H. Hsu, Mechanical stability and adhesion of microstructures under capillary forces—Part II: Experiments. J. Microelectromech. Syst. 2(1), 44–55 (1993)

    Article  Google Scholar 

  20. N. Paust, C. Litterst, T. Metz, M. Eck, C. Ziegler, R. Zengerle, P. Koltay, Capillary-driven pumping for passive degassing and fuel supply in direct methanol fuel cells. Microfluid. Nanofluid. 7(4), 531–543 (2009)

    Google Scholar 

  21. V. Sariola, Droplet self-alignment: high-precision robotic microassembly and self-assembly. Ph.D. dissertation, Aalto University, Jun 2012

    Google Scholar 

  22. R. Shabani, H.J. Cho, Active surface tension driven micropump using droplet/meniscus pressure gradient. Sensors and Actuators, B 1(2), 85–102 (2012 in press)

    Google Scholar 

  23. S. Tawfick, M. De Volder, A.J Hart, Structurally programmed capillary folding of carbon nanotube assemblies. Langmuir 27(10), 6389–6394 (2011)

    Google Scholar 

  24. C. Tonry, M. Patel, C. Bailey, M.P.Y. Desmuliez, S. Cargill, W. Yu, Modelling of the electric field assisted capillarity effect used for the fabrication of hollow polymer microstructures. IEEE, Apr 2012, pp. 1/6–6/6

    Google Scholar 

  25. V.I. Vasil’ev, V.V. Popov, G.G. Tsypkin, Nonlinear problem of unsaturated frozen soil thawing in the presence of capillary forces. Fluid Dyn. 47(1), 106–113 (2012)

    Google Scholar 

  26. M.J. Vogel, P.H. Steen, Capillarity-based switchable adhesion. Proc. Nat. Acad. Sci. 107(8), 3377–3381 (2010)

    Google Scholar 

  27. T. Zhang, T. Cui, High-performance surface-tension-driven capillary pumping based on layer-by-layer self assembly of TiO\(_{2}\) nanoparticles. IEEE, Jun 2011, pp. 606–609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lambert, P. (2013). Conclusions and Perspectives. In: Lambert, P. (eds) Surface Tension in Microsystems. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37552-1_15

Download citation

Publish with us

Policies and ethics