Skip to main content

Modeling of liquid and gas saturated porous solids under freezing and thawing cycles

  • Conference paper
  • First Online:
Aktuelle Forschung in der Bodenmechanik 2013

Zusammenfassung

In many branches of engineering, e.g. material science, soil constructions, and geotechnics, freezing and thawing processes of fluid filled porous media play an important role. The coupled fluid-ice-solid behavior is strongly influenced by phase transition, heat and mass transport as well as interactions of fluid-solid/ice pressure depending on the entropy of fusion, and is accompanied by a volume expansion. In this contribution, a macroscopic model based on the Theory of Porous Media (TPM) is presented toward the description of freezing and thawing processes/ freeze-thaw cycles in fluid filled porous media. Therefore, a quadruple model consisting of the constituents solid, ice, liquid and gas is used. Attention is paid to the description of capillary effects, especially, the frost suction, the distribution of fluid and ice pressure as well as solid deformation before, during and after the ice formation in consideration of energetic effects under cycling thermal loading. Numerical examples are presented to demonstrate the usefulness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Alsabry K, Wilmanski A (2011) Iterative description of freezing and thawing processes in porous materials. J. Appl. Math. Mech. (ZAMM) 91(9):753–760

    Article  Google Scholar 

  2. Aquirre-Punte J, Philippe A (1969) Quelques recherches effectu´ees en france sur le probl`emede la cong´elation des sols. Revue Generale de Thermique 96:1123–1141

    Google Scholar 

  3. Ateshian G, Ricken T (2010) Multigenerational interstitial growth of biological tissues, Biomech. Model. Mechanobiol. 9(6):689–702, DOI 10.1007/s10237–010–0205–y

    Google Scholar 

  4. Atkins P (1998) Physical chemistry. Oxford University Press

    Google Scholar 

  5. Biot M (1941) General theory of three-dimensional consolidation. J. Appl. Phys. 12:155–164

    Article  Google Scholar 

  6. Bluhm J, Bloßfeld M, Ricken T (2013) Energetic effects during phase transition under freezing-thawing load in porous media – a continuums multiphase description and fesimulation. Zeitschr. Angew. Math. Mech. (ZAMM) submitted for publication

    Google Scholar 

  7. Bluhm J, Ricken T, BloßfeldM (2008) Energetische Aspekte zum Gefrierverhalten vonWasser in porösen Strukturen. Proc. Appl. Math. Mech. (PAMM) 8:10483–10484

    Google Scholar 

  8. Bluhm J, Ricken T, Bloßfeld M (2009) Freezing and thawing load in porous media – experiment and simulation. Proc. Appl. Math. Mech. (PAMM) 9:387–388

    Google Scholar 

  9. Bowen R (1980) Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18:1129–1148

    Article  Google Scholar 

  10. Bowen R (1982) Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20:697–735

    Article  Google Scholar 

  11. Brooks R, Corey A (1964) Hydraulic propertiesof porous media. In: Tech. Rep. 3, Colorado State University, Fort Collins

    Google Scholar 

  12. Coussy O (2004) Poromechanics. John Wiley & Sons

    Google Scholar 

  13. Coussy O (2005) Poromechanics of freezing materials. J. Mech. Phys. Solids 53(8):1689–1718

    Article  Google Scholar 

  14. Coussy O, Monteiro P (2008) Poroelastic model for concrete exposed to freezing temperatures. Cem. Concr. Res. 38(1):40–48

    Google Scholar 

  15. de Boer R (2000) Theory of Porous Media – highlights in the historical development and current state. Springer

    Google Scholar 

  16. Ehlers W (1989) On the thermodynamics of elasto-plastic porous media. Arch. Mech. 41:73–93

    Google Scholar 

  17. Ehlers W (1993) Constitutive equations for granular materials in geomechanical contexts. In: Continuum mechanics in environmental sciences and geophysics, edited by K. Hutter No. 337 in CISM Courses and Lecture Notes (Springer):313–402

    Google Scholar 

  18. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Porous Media: Theory, Experiments and Numerical Applications, edited by W. Ehlers and J. Bluhm (Springer):3–86

    Google Scholar 

  19. Ehlers W, Bluhm J (eds.) (2002) Porous media: Theory, experiments and numerical applications. Springer

    Google Scholar 

  20. Fayer M (2000) UNSAT-H Version 3.0: Unsaturated soil water and heat flow model. Theory, user manual, and examples, Pacific Northwest National Laboratory, Richland, WA

    Google Scholar 

  21. Flerchinger G, Saxton K (1989) Simultaneous heat and water model of a freezing snowresidue-soil system – I. Theory and development. Trans. ASAE 32(2):565–571

    Article  Google Scholar 

  22. Graf T (2008) Multiphsic flow processes in deformable porous media under consideration of fluid phase transition. PhD thesis, Report No.: II-17, Institut für Mechanik (Bauwesen), Lehrstuhl II, Prof. Dr.-Ing. W. Ehlers, Universität Stuttgart

    Google Scholar 

  23. Guymon G, Hromadka II T, Berg R (1980) A one dimensional frost heave model based uponsimulation of simultaneous heat and water flux. Cold Reg. Sci. Technol. 3:253–262

    Google Scholar 

  24. Hansson K, Simunek J, Mizoguchi M, Lundin L C, van Genuchten M T (2004) Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications. Vadose Zone 3:693–704

    Google Scholar 

  25. Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer

    Google Scholar 

  26. Humphrey J, Rajagopal K (2002) A constrained mixture model for growth and remodelling of soft tissues. Math. Models Methods Appl. Sci. 12:407–430

    Google Scholar 

  27. Ippisch O (2003) Coupled Transport in Natural Porous Media. PhD thesis, University of Heidelberg

    Google Scholar 

  28. Li N, Chen F, Xu B, Swoboda B (2008) Theoretical modeling framework for an unsaturated freezing soil, Cold Reg. Sci. Technol. 54(1):19–35

    Google Scholar 

  29. Meschke G, Leonhart D, Timothy J, Zhou M (2011) Computational mechanics of multiphase materials – modeling strategies at different scales. Comput. Assisted Mech. Eng. Sci. (CAMES) 18:73–89

    Google Scholar 

  30. Mikkola M, Hartikainen J (2001) Mathematical model of soil freezing and its numerical implementation. Int. J. Numer. Meth. Engng 52:543–557

    Article  Google Scholar 

  31. Miller R (1980) Freezing phenomena in soils. In: Applications of Soil Physics, edited by D. Hillel. Academic Press:254–299.

    Google Scholar 

  32. Nassar I, Horton R (1992) Simultaneous transfer of heat, water, and solute in porous media: I. Theoretical development. Soil Sci. Soc. Am. J. 56:1350–1356

    Article  Google Scholar 

  33. O’Neill K, RD M (1985) Exploration of a rigid ice model of frost heave.Water Resour. Res. 21(3):281–296

    Article  Google Scholar 

  34. Richards L (1931) Capillary conduction of liquids through porous mediums, Physics 1:318–333

    Article  Google Scholar 

  35. Ricken T, Bluhm J (2010) Modeling fluid saturated porousmedia under frost attack. GAMMMitteilungen 33(1):40–56 , DOI 10.1002/gamm.201010004.

    Google Scholar 

  36. Ricken T, de Boer R (2003) Multiphase flow in a capillary porous medium. Comput. Mater. Sci. 28:704–713

    Article  Google Scholar 

  37. Rodriguez E, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4):455–467

    Article  Google Scholar 

  38. Selvadurai A, Hu J, Konuk I (1999) Computational modelling of frost heave induced soilpipeline interaction: I. Modelling of frost heave. Cold Reg. Sci. Technol. 29(3):215–228

    Google Scholar 

  39. Setzer M (2004) Modelling and testing the freeze-thaw attack by micro-ice-lens modeland CDF/CIF-Test. In: Proceedings of the International Workshop on Microstructure and Durability to Predict Service Life of Concrete Structures, Hokkaido University, Sapporo, Japan:17–28.

    Google Scholar 

  40. Setzer M, P H, Palecki S, Auberg R, Feldrappe V, Siebel E (2004) CIF-Test – capillary suction, internal damage and freeze-thaw test, Reference method and alternative methods. Mater. Struct. 37(247):743–753

    Google Scholar 

  41. Zhou M, Meschke G (2011) Numerical modelling of coupling mechanisms during freezing in porous materials. Proc. Appl. Math. Mech. (PAMM) 11:495–496, DOI10.1002/pamm.201110239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ricken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ricken, T., Bluhm, J. (2014). Modeling of liquid and gas saturated porous solids under freezing and thawing cycles. In: Schanz, T., Hettler, A. (eds) Aktuelle Forschung in der Bodenmechanik 2013. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37542-2_2

Download citation

Publish with us

Policies and ethics