Skip to main content

Cyclone: Their Characteristics and Drying Technological Applications

  • Chapter
  • First Online:
Industrial and Technological Applications of Transport in Porous Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 36))

Abstract

Cyclone is one of the most widely known device being extensively used to separate particles from a gas stream, and more recently as a modern drying technology (cyclonic dryer). In this sense, this chapter aim to briefly discuss disperse multiphase flow and heat and mass transfer theory in a cyclone as dryer, focusing principle of operation, design and selection, overall collection efficiency, particle–particle and fluid-particle interactions, particle residence time and, performance to moisture removal of moist particles. A transient three-dimensional mathematical modeling to predict fluid flow fields, particle trajectory, and gas-particle interactions (heat and mass transfer, dimensions variations and force effects) is presented and discussed. Application to sugar and alcohol industry (sugar-cane bagasse drying) has been done, and predicted results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loth, E., Tryggvason, G., Tsuji, Y., Elghobashig, S.E., Crowe, C.T., Berlemont, A., Reeks, M., Simonim, O., Frank, T., Onishi, Y., van Wachem, B.: Modeling. In: Crowe, C.T. (ed.) Multiphase Flow Handbook. CRC Taylon & Francis, Boca Raton (2006)

    Google Scholar 

  2. Brennen, M.S., Narasimha, M., Holtham, P.N.: Multiphase modelling of hydrocyclones—prediction of cut-size. Minerals Eng. 20, 395–406 (2007)

    Article  Google Scholar 

  3. Ahmed, M.M., Ibrahim, G.A., Farghaly, M.G.: Performance of a three-product hydrocyclone. Int. J. Miner. Process. 91, 34–40 (2009)

    Article  CAS  Google Scholar 

  4. Bhaskar, K.U., Murthy, Y.R., Raju, M.R., Tiwari, S., Srivastava, J.K., Ramakrishnan, N.: CFD simulation and experimental validation studies on hydrocyclone. Minerals Eng. 20, 60–71 (2007)

    Article  CAS  Google Scholar 

  5. Dai, G.Q., Chen, W.M., Li, J.M., Chu, L.Y.: Experimental study of solid-liquid two-phase flow in a hydrocyclone. Chem. Eng. J. 74, 211–216 (1999)

    Article  CAS  Google Scholar 

  6. Emami, S., Tabil, L.G., Tyler, R.T., Crerar, W.J.: Starch-protein separation from chickpea flour using a hydrocyclone. J. Food Eng. 82, 460–465 (2007)

    Article  Google Scholar 

  7. Husveg, T., Rambeau, O., Drengstig, T., Bilstad, T.: Performance of a deoiling hydrocyclone during variable flow rates. Minerals Eng. 20, 368–379 (2007)

    Article  CAS  Google Scholar 

  8. Jiao, J., Zheng, Y., Sun, G., Wang, J.: Study of the separation efficiency and the flow field of a dynamic cyclone. Separ. Purif. Technol. 49, 157–166 (2006)

    Article  CAS  Google Scholar 

  9. Ko, J., Zahrai, S., Macchion, O.: Numerical modeling of highly swirling flows in a through-flow cylindrical hydrocyclone. AIChE J. 52(10), 3334–3344 (2006)

    Article  CAS  Google Scholar 

  10. Leith, D., Licht, W.: The collection efficiency of cyclone type particle collectors—a new theoretical approach. AIChE Symp. Ser. Air pollut. Control 68(126), 196–206 (1972)

    Google Scholar 

  11. Liu, C., Wang, L., Wang, J., Liu, Q.: Investigation of energy loss mechanisms in cyclone separations. Chem. Eng. Technol. 28(10), 1182–1190 (2005)

    Article  CAS  Google Scholar 

  12. Martínez, L.F., Lavín, A.G., Mahamud, M.M., Bueno, J.L.: Vortex finder optimum length in hydrocyclone separation. Chem. Eng. Process. 47, 192–199 (2008)

    Article  Google Scholar 

  13. Neesse, T., Dueck, J.: Dynamic modelling of the hydrocyclone. Minerals Eng. 20, 380–386 (2007)

    Article  CAS  Google Scholar 

  14. Shi, L., Bayless, D.J.: Comparison of boundary conditions for predicting the collection efficiency of cyclones. Powder Technol. 173, 29–37 (2007)

    Article  CAS  Google Scholar 

  15. Silva, M.A.: Study of the drying in cyclone. In: Ph. D. thesis, mechanical engineering, State University of Campinas, S. P., Brazil (1991) (In Portuguese)

    Google Scholar 

  16. Wang, B., Yu, A.B.: Numerical study of particle-fluid flow in hydrocyclones with different body dimensions. Minerals Eng. 19, 1022–1033 (2006)

    Article  CAS  Google Scholar 

  17. Van ‘t Land, C.M.: Industrial Drying Equipment: Selection and Application. Marcel Dekker, Inc. New York (1991)

    Google Scholar 

  18. Cortés, C., Gil, A.: Modeling the gas and particle flow inside cyclone separators. Progress in Energy Comb. Sci. 33, 409–452 (2007)

    Article  Google Scholar 

  19. Blei, S., Sommerfield, M.: CFD in drying technology—spray-dryer simulation. In: Tsotsas, E., Mujumdar, A.S. (eds.) Modern Drying Technology: Computational Tools at Different Scales, pp. 155–208. Wiley-VCH, Germany (2007)

    Google Scholar 

  20. Crowe, C.T., Michaelides, E.E.: Basic concepts and definitions. In: Crowe, C.T. (ed.) Multiphase Flow Handbook. CRC Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  21. Kleinstreuer, C.: Two-Phase Flow: Theory and Applications. Taylor & Francis, New York (2003)

    Google Scholar 

  22. Xiaodong, L., Jianhua, Y., Yuchun, C., Mingjiang, N., Kefa, C.: Numerical simulation of the effects of turbulence intensity and layer on separation efficiency in a cyclone separator. Chem. Eng. J. 95, 235–240 (2003)

    Article  Google Scholar 

  23. Qian, F., Huang, Z., Chen, G., Zhang, M.: Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations. Comp. Chem. Eng. 31, 1111–1122 (2007)

    Article  CAS  Google Scholar 

  24. Qian, F., Zhang, M.: Effects of the inlet section angle on the flow field of a cyclone. Chem. Eng. Technol. 30(11), 1564–1570 (2007)

    Article  CAS  Google Scholar 

  25. Oweis, G.F., Ceccio, S.L., Matsumoto, Y., Tropea, C., Roisman, I.V., Tsuji, Y.: Multiphase interactions. In: Crowe, C.T. (ed.) Multiphase Flow Handbook. CRC Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  26. Derksen, J.J., Sundaresan, S., van den Akker, H.E.A.: Simulation of mass-loading effects in gas-solid cyclone separators. Powder Technol. 163, 59–68 (2006)

    Article  CAS  Google Scholar 

  27. Hashemi, S.B.: A mathematical model to compare the efficiency of cyclones. Chem. Eng. Technol. 29(12), 1444–1454 (2006)

    Article  CAS  Google Scholar 

  28. Jumah, R.Y., Mujumdar, A.S.: Dryer feeding systems. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying. Marcel Dekker, New York (1995)

    Google Scholar 

  29. Narasimha, M., Brennan, M., Holtham, P.N.: Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape. Int. J. Miner. Process. 80, 1–14 (2006)

    Article  CAS  Google Scholar 

  30. Xiang, R.B., Lee, K.W.: Numerical study of flow field in cyclones of different height. Chem. Eng. Process. 44, 877–883 (2005)

    Article  CAS  Google Scholar 

  31. Chen, J., Shi, M.: A universal model to calculate cyclone pressure drop. Powder Technol. 171, 184–191 (2007)

    Article  CAS  Google Scholar 

  32. Gimbun, J., Chuah, T.G., Fakhru’l-Razi, A., Choong, T.S.Y.: The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chem. Eng. Process. 44, 7–12 (2005)

    Article  CAS  Google Scholar 

  33. Ji, Z., Xiong, Z., Wu, X., Chen, H., Wu, H.: Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technol. 191, 254–259 (2009)

    Article  CAS  Google Scholar 

  34. Martignoni, W.P., Bernardo, S., Quintani, C.L.: Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD). Braz. J. Chem. Eng. 24(1), 83–94 (2007)

    Article  CAS  Google Scholar 

  35. Raoufi, A., Shams, M., Farzaneh, M., Ebrahimi, R.: Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chem. Eng. Process. 47, 128–137 (2008)

    Article  CAS  Google Scholar 

  36. Raoufi, A., Shams, M., Kanani, H.: CFD analysis of flow field in square cyclones. Powder Technol. 191, 349–357 (2009)

    Article  CAS  Google Scholar 

  37. Tan, Z.: An analytical model for the fraction al efficiency of a uniflow cyclone with a tangential inlet. Powder Technol. 183, 147–151 (2008)

    Article  CAS  Google Scholar 

  38. Vegini, A.A., Meier, H.F., Iess, J.J., Mori, M.: Computational fluid dynamics (CFD) analysis of cyclone separators connected in series. Ind. Eng. Chem. Res. 47, 192–200 (2008)

    Article  CAS  Google Scholar 

  39. Wan, G., Sun, G., Xue, X., Shi, M.: Solids concentration simulation of different size particles in a cyclone separator. Powder Technol. 183, 94–104 (2008)

    Article  CAS  Google Scholar 

  40. Yang, S., Yang, H., Zhang, H., Li, S., Yue, G.: A transient method to study the pressure drop characteristics of the cyclone in a CFB system. Powder Technol. 192, 105–109 (2009)

    Article  CAS  Google Scholar 

  41. Yoshida, H., Inada, Y., Fukui, K., Yamamoto, T.: Improvement of gas-cyclone performance by use of local fluid flow control method. Powder Technol. 193, 6–14 (2009)

    Article  CAS  Google Scholar 

  42. Keey, R.B.: Drying of Loose and Particulate Materials. Hemisphere Publishing Corporation, New York (1992)

    Google Scholar 

  43. Korn, O.: Cyclone dryer: a pneumatic dryer with increased solid residence time. Drying Techn. 19(8), 1925–1937 (2001)

    Article  Google Scholar 

  44. ANSYS CFX-Solver Theory Guide: ANSYS, Inc. southpointe 275 technology drive canonsburg, PA 15317, (2009)

    Google Scholar 

  45. Farias, F.P.M., Lima, A.G.B., Farias Neto, S.R.: Numerical study of thermal fluid dynamics of a cyclone as dryer. In: Proceedings of National Congress of the Mechanical Engineering (CONEM 2006), vol. 1, pp. 1–10. Recife-PE, Brazil, (2006b) (In Portuguese)

    Google Scholar 

  46. Kaensup, W., Kulwong, S., Wongwises, S.: Comparison of drying kinetics of paddy using a pneumatic conveying dryer with and without a cyclone. Drying Technol. 24, 1039–1045 (2006)

    Article  Google Scholar 

  47. Kanaoka, C., Yoshida, H., Makino, H.: Particle separation systems. In: Crowe, C.T. (ed.) Multiphase Flow Handbook. CRC Taylon & Francis, Boca Raton (2006)

    Google Scholar 

  48. Licht, W.: Air Pollution Control Engineering. Marcel Dekker, New York (1988)

    Google Scholar 

  49. Zhao, B.: A theoretical approach to pressure drop across cyclone. Chem. Eng. Technol. 27(10), 1105–1108 (2004)

    Article  CAS  Google Scholar 

  50. Kudra, T., Mujumdar, A.S.: Advanced Drying Technologies. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  51. Strumillo, C., Kudra, T.: Drying: Principles Science and Design. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  52. Benta, E.S., Silva, M.A.: Cyclonic drying of milled corncob. In: Proceedings of Inter-American Drying Conference (IADC) A, pp. 288–294. Itu, Brazil, (1997)

    Google Scholar 

  53. Corrêa, J.L.G., Graminho, D.R., Silva, M.A., Nebra, S.A.: Cyclone as a sugar cane bagasse dryer. Chinese J. Chem. Eng. 12(6), 826–830 (2004)

    Google Scholar 

  54. Corrêa, J.L.G., Graminho, D.R., Silva, M.A., Nebra, S.A.: The cyclonic dryer—a numerical and experimental analysis of the influence of geometry on average particle residence time. Braz. J. Chem. Eng. 21(1), 103–112 (2004)

    Article  Google Scholar 

  55. Dibb, A., Silva, M.A.: Cyclone as dryer –the optimum geometry. In: Proceedings of Inter-American Drying Conference (IADC), pp. 396–403. Itu, Brazil, B, (1997)

    Google Scholar 

  56. Akpinar, E.K., Midilli, A., Bicer, Y.: Energy and exergy of potato drying process via cyclone type dryer. Energy Conv. Manag. 46, 2530–2552 (2005)

    Article  Google Scholar 

  57. Bunyawanichakul, P., Kirkpatrick, M.P., Sargison, J.E., Walker, G.J.: Numerical and experimental studies of the flow field in a cyclone dryer. J. Fluids Eng. 128, 1240–1248 (2006)

    Article  Google Scholar 

  58. Bunyawanichakul, P., Kirkpatrick, M.P., Sargison, J.E., Walker, G.J.: A three-dimensional simulation of a cyclone dryer. In: Proceedings of International Conference on CFD in the Process Industries CSIRO, pp. 13–15. Melbourne, Australia, Dec (2006b)

    Google Scholar 

  59. Kemp, I.C., Frankum, D.P., Abrahamson, J., Saruchera, T.: Solids residence time and drying in cyclones. In: Proceedings of 11th International Drying Conference (IDS 1998), pp. 581–588. Thessilonika, Greece, A (1998)

    Google Scholar 

  60. Osinskii, V.P., Titova, N.V., Khaustov, I.P.: Design and construction of new machines and equipment: experience of use of combined cyclone dryers. Chem. Petrol. Eng. 18(6), 215–218 (1982)

    Article  Google Scholar 

  61. Ulrich, W.: Cyclone dryer. In: Proceeding of 13th International Drying Symposium (IDS 2002), pp. 867–873. Beijing, China, B, (2002)

    Google Scholar 

  62. Silva, M.A., Nebra, S.A.: Numerical simulation of drying in a cyclone. Drying Technol. 15(6–8), 1731–1741 (1997)

    Article  CAS  Google Scholar 

  63. Kemp, I.: Process-systems simulation tools. In: Tsotsas, E., Mujumdar, A.S. (eds.) Modern Drying Technologies. Wiley-VHC, Weinheim (2007)

    Google Scholar 

  64. Renade, V.V.: Computational Flow Modeling for Chemical Reactor Engineering. Academic Press, India (2002)

    Google Scholar 

  65. Rosa, E.S.: Isothermal multiphase flow—model of multi-fluid and mixture. In: Artmed, S.A. (ed.) Porto Alegre, Brazil (2012) (In Portuguese)

    Google Scholar 

  66. Bogdanović, B., Bogdanović-Jovanović, J., Stamenković, Ž., Majstorović, P.: The comparison of theoretical and experimental results of velocity distribution on boundary streamlines of separated flow around a hydrofoil in a straight plane cascade. Facta Univ. Ser.: Mech. Eng. 5(1), 33–46 (2007)

    Google Scholar 

  67. Davidson, L.: An introduction to turbulence models, Department of thermo and fluid dynamics, Chalmers University of Technology, Göteborg, Sweden. http://www.tfd.chalmers.se/˜lada (2011). Accessed on 05 Oct 2012

  68. Farias Neto, S.R., Santos, J.S.S., Crivelaro, K.C.O., Farias, F.P.M., Lima, A.G.: Heavy oils transportation in catenary pipeline riser: modeling and simulation, In: Materials with Complex Behavior II, Advanced Structured Materials. Springer, Berlin (2011)

    Google Scholar 

  69. Shoham, O., Tulsa, U.: Mechanistic Modeling of Gas-liquid Two-phase Flow in Pipes. Society of Petroleum Engineers, USA (2006)

    Google Scholar 

  70. Yang, X., Eidelman, S.: Numerical analysis of a high-velocity oxygen-fuel thermal spray system. J. Thermal Spray Technol. 5(2), 175–184 (1996)

    Article  CAS  Google Scholar 

  71. Thomas, P.J.: On the influence of the Basset history force on the motion of a particle through a fluid. Phys. Fluids A 4(9), 2090 (1992)

    Google Scholar 

  72. Corrêa, J.L.G.: Discussion of cyclonic dryers design parameters. Ph.D. thesis, Mech. Eng. Fac., State University of Campinas, Campinas (SP) Brazil, (2003) (in Portuguese)

    Google Scholar 

  73. Farias, F.P.M., Lima, A.G.B., Farias Neto, S.R.: Influence of the geometric form of the duct of feeding of a cyclone as dryer. In: Proceedings of 11th Brazilian Congress of Thermal Sciences and Engineering (ENCIT), Curitiba, Brazil (2006a) (In Portuguese)

    Google Scholar 

  74. Barbosa, E.S.: Geometrical and hydrodynamic aspect of a hydrocyclone in the separation process of multiphase system: application to oil industry. Ph.D. thesis, Process engineering, Federal University of Campina Grande, Brazil, 220p, (2011) (in Portuguese)

    Google Scholar 

  75. Cooper, C.D., Alley, F.C.: Air pollution control—a design approach. http://engineering.dartmouth.edu/~cushman/courses/engs37/A2-Cyclone-Theory.pdf. Accessed on 05 Mar 2004

  76. Farias, F.P.M., Lima, A.G.B., Farias Neto, S.R.: Numerical investigations of the sugar cane bagasse drying in cyclone. In: Proceedings of 16th International Drying Symposium (IDS 2008), pp. 9–12. Hyderabad, India, Nov (2008)

    Google Scholar 

  77. Loyola, N., Tolman, S., Liang, L. Kennedy, M., Johnson, D.J.: Cyclone separators. www.wsu.edu/~gmhyde/433_web_pages/cyclones/CycloneRptTeam3.html (1996). Accessed on 05 Mar 2004

  78. Souza, J.A.R.: Drying solid via cyclones: modeling and simulation. PhD thesis, process engineering, Federal University of Campina Grande, Brazil (2012) (In Portuguese)

    Google Scholar 

  79. Da Silva, P., Briens, C., Bernis, A.: Development of a new rapid method to measure erosion rates in laboratory and pilot plant cyclones. Powder Technol. 131(2–3), 111–119 (2003)

    Article  Google Scholar 

  80. Molerus, O., Glückler, M.: Development of a cyclone separator with new design. Powder Technol. 86, 37–40 (1996)

    Article  CAS  Google Scholar 

  81. Nebra, S.A., Silva, M.A., Mujumdar, A.S.: Drying in cyclones-a review. Drying Technol. 18(3), 791–832 (2000)

    Article  CAS  Google Scholar 

  82. Gonçalves, E.C.: Cyclone drying of the orange juice processing. Master’s dissertation, chemical engineering school, State University of Campinas, Brazil, pp. 87 (1996)

    Google Scholar 

  83. Heinze, C.: A new cyclone dryer for solid particles. Ger. Chem. Eng 7(4), 274–279 (1984)

    Google Scholar 

  84. Wlodarczyk, J.B.: Suszenie cial stalych rozdrobnionych wukladzie cyklonowim (Drying of particulate material in a cyclonic system). Ph. D. thesis, Polytechnic Institute of Chemical Engineering, pp. 300. Warsaw (1972)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and FINEP (Financiadora de Estudos e Projetos, Brazil) for supporting this work; to the authors of the references in this paper that helped in our understanding of this complex subject, and to the Editors by the opportunity given to present our research in this book. J.M.P.Q. Delgado would like to thank Fundação para a Ciência e a Tecnologia (FCT) for financial support through the grant SFRH/BPD/84377/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Barbosa de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farias Neto, S.R., Farias, F.P.M., Delgado, J.M.P.Q., de Lima, A.G.B., Cunha, A.L. (2013). Cyclone: Their Characteristics and Drying Technological Applications. In: Delgado, J. (eds) Industrial and Technological Applications of Transport in Porous Materials. Advanced Structured Materials, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37469-2_1

Download citation

Publish with us

Policies and ethics