Skip to main content

Object Tracking within the Framework of Concept Drift

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

It is well known that the backgrounds or the targets always change in real scenes, which weakens the effectiveness of classical tracking algorithms because of frequent model mismatches. In this paper, an object tracking algorithm within the framework of concept drift is proposed to solve this problem. We detect the driftpoints using a simple message-passing algorithm based on Bayesian Approach. The analyzed probability distribution lays the foundation for the self-adaption of our new model. Our tracking algorithm within the framework of concept drift improves the tracking robustness and accuracy which is illustrated by the two experiments on two real-world changing scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thayananthan, A., Iwasaki, M., Cipolla, R.: Principled fusion of high-level model and low-level cues for motion segmentation. In: IEEE Conference Vision and Pattern Recognition (2008)

    Google Scholar 

  2. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  3. Pavlovic, V., Rehg, J., Cham, T., Murphy, K.: A dynamic Bayesian network approach to figure tracking using learned dynamic models. In: IEEE Conference on Computer Vision (1999)

    Google Scholar 

  4. Fearnhead, P.: Exact and efficient Bayesian inference for multiple chagepoint problems. Statistic and Computing 16(2), 203–213 (2006)

    Article  MathSciNet  Google Scholar 

  5. Fearnhead, P., Liu, Z.: Online inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B 69(4), 589–605 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bach, S.H., Maloof, M.A.: A Bayesian approach to concept drift. The Neural Information Processing System (2010)

    Google Scholar 

  7. Adams, R.P., Mackay, D.J.C.: Bayesian online changepoint detection. Technical Report, University of Cambridge (2007)

    Google Scholar 

  8. Barry, D., Hartigan, J.A.: Product partition models for change point problems. The Annals of Statistics 20, 260–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image and Vision Computing 21(2), 99–110 (2003)

    Article  Google Scholar 

  10. Barry, D., Hartigan, J.A.: A Bayesian Analysis for Change Point Problems. Journal of the American Statistical Association 35(3), 309–319 (1993)

    MathSciNet  Google Scholar 

  11. Bach, S.H., Maloof, M.A.: Paired learners for concept drift. In: Proceedings of the Eighth IEEE International Conference on Data Mining. IEEE Press (2008)

    Google Scholar 

  12. Doucet, A., Godsill, S.: On sequential Monte Carlo methods for Bayesian filtering. Statistics and Computing 10, 197–208 (2000)

    Article  Google Scholar 

  13. Ekinci, M.: Human Identification using gait. Turk. J. Elec. Engin. 14(2), 267–291 (2006)

    Google Scholar 

  14. Wang, L., Tan, T.: Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  15. Yam, C.Y., Nixon, M.S., Carter, J.N.: Gait recognition by walking and running: a model-based approach. In: The 5th Asian Conference on Computer Vision (2002)

    Google Scholar 

  16. Bouchrika, I., Carter, J.N., Nixon, M.S., Thallinger, G.: Using gait features for improving walking people detection. In: International Conference on Pattern Recognition (2010)

    Google Scholar 

  17. de la Torre, F., Gong, S., McKenna, S.: View-Based Adaptive Affine Tracking. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 828–842. Springer, Heidelberg (1998)

    Google Scholar 

  18. Zhou, S.H.K., Chellappa, R., Moghaddam, B.: Visual tracking and recognition usingappearance-adaptive models in particle filters. IEEE Transactions on Image Processing 13(11), 1491–1506 (2004)

    Article  Google Scholar 

  19. Lim, J., Ross, D., Lin, R.S., et al.: Incremental learning for visual tracking. In: Saul, L., et al. (eds.) Advances in Neural Information Processing Systems. MIT Press (2005)

    Google Scholar 

  20. Skočaj, D.: Robust subspace approaches to visual learning and recognition. PhD thesis, Computer and Information Science, University of Ljubljana (2003)

    Google Scholar 

  21. Ross, A.D., Lim, J., Lin, R.-S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77(1-3) (2008)

    Google Scholar 

  22. Pavlovic, V., Rehg, J.M., MacCormick, J.: Learning Switching Linear Models of Human Motion. In: Neural Information Processing Systems, pp. 981–987 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Zhou, Y., Yang, J. (2013). Object Tracking within the Framework of Concept Drift. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics