Skip to main content

Architectural Design Thinking as a Form of Model-Based Reasoning

  • Conference paper
  • First Online:
Model-Based Reasoning in Science and Technology

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 8))

Abstract

Model-based reasoning can be considered central in very diverse domains of practice. Recently considered domains of practice are political discourse, social intercourse, language learning, archaeology, collaboration and conversation, and so forth. In this paper, we explore features of model-based reasoning in architectural design and construction. Additionally, an indication is given of some existing suggestions of how model-based reasoning systems may be simulated in an automated environment. We extend these lines of thought into our own simulated environment and give indications of how such a model-based reasoning system can not only give us better insights in the architectural design and construction practice, but also why it is so hard for such a system to eventually surpass human capabilities in this area of practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Magnani, L.: Abductive reasoning: philosophical and educational perspectives in medicine. In: Evans, D., Patel, V. (eds.) Advanced Models of Cognition for Medical Training and Practice, pp. 21–41. Springer, Berlin (1992)

    Chapter  Google Scholar 

  2. Jovanovic, A., Krneta, G.: Abductive reasoning and second language learning. J. Lang. Teach. Res. 3(2), 306–313 (2012)

    Google Scholar 

  3. Wirth, U.: Abductive reasoning in Peirce’s and Davidson’s account of interpretation. T. C. S. Peirce Soc. 35(1), 115–127 (1999)

    Google Scholar 

  4. Arrighi, C., Ferrario, R.: Abductive reasoning, interpretation and collaborative processes. Found. Sci. 13, 75–87 (2008)

    Article  Google Scholar 

  5. Shelley, C.: Visual abductive reasoning in archaeology. Philos. Sci. 63(2), 278–301 (1996)

    Article  Google Scholar 

  6. Thagard, P.: The cognitive-affective structure of political ideologies. In: Martinovski, B. (ed.) Emotion in Group Decision and Negotiation. Springer, Berlin (forthcoming)

    Google Scholar 

  7. Shelley, C.: Motivation-biased design. In: Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2956–2961 (2011)

    Google Scholar 

  8. Thagard, P.: Creative combination of representations: scientific discovery and technological invention. In: Proctor, R., Capaldi, E. (eds.) Psychology of Science: Implicit and Explicit Processes, pp. 389–405. Oxford University Press, Oxford (2012)

    Chapter  Google Scholar 

  9. Goldschmidt, G.: Linkography: assessing design productivity. In: Trappl, R. (ed.) Cybernetics and Systems ’90. World Scientific, Singapore (1990)

    Google Scholar 

  10. Goldschmidt, G.: Criteria for design evaluation: a process-oriented paradigm. In: Kalay, Y. (ed.) Evaluating and Predicting Design Performance. Wiley, New York (1992)

    Google Scholar 

  11. Goldschmidt, G.: The designer as a team of one. Des. Issues 16(2), 189–209 (1995)

    Google Scholar 

  12. Bod, R.: The data-oriented parsing approach: theory and application. In: Fulcher, J., Jain, L. (eds.) Computational Intelligence: A Compendium, pp. 307–342. Springer, Oxford (2008)

    Chapter  Google Scholar 

  13. Bod, R.: From exemplar to grammar: a probabilistic analogy-based model of language learning. Cog. Sci. 33, 752–793 (2009)

    Google Scholar 

  14. Velazquez-Quesada, F.: Small steps in dynamics of information. Ph.D. thesis, University of Amsterdam, Amsterdam (2011)

    Google Scholar 

  15. Pauwels, P., Bod, R.: Including the power of interpretation through a simulation of Peirce’s process of inquiry. Lit. Ling. Comput. (in press). doi: 10.1093/llc/fqs056

  16. Pauwels, P., De Meyer, R., Van Campenhout, J.: Design thinking support: information systems vs. reasoning. Des. Issues 29(2) (2013)

    Google Scholar 

  17. Archer, L.: Systematic methods for designers. In: Developments in Design, Methodology, pp. 57–82. Wiley, Chichester (1965)

    Google Scholar 

  18. Jones, J.: Design Methods: Seeds of Human Futures, 1st edn. Wiley, New York (1970)

    Google Scholar 

  19. Alexander, C.: The state of the art in design methods. Des. Methods Group Newslett. 5(3), 3–7 (1971)

    Google Scholar 

  20. Jones, J.: How my thoughts about design methods have changed during the years. Des. Methods Theor. 11(1), 48–62 (1977)

    Google Scholar 

  21. Rittel, H., Webber, M.: Planning problems are wicked problems. In: Cross, N. (ed.) Developments in Design Methodology, pp. 135–144. Wiley, Chichester (1984)

    Google Scholar 

  22. Simon, H.: The structure of ill-structured problems. Artif. Intell. 4, 181–201 (1973)

    Article  Google Scholar 

  23. Rittel, H., Webber, M.: Dilemmas in a general theory of planning. Policy Sci. 4, 155–169 (1973)

    Article  Google Scholar 

  24. Schön, D.: The Reflective Practitioner: How Professionals Think in Action. Temple Smith, London (1983)

    Google Scholar 

  25. Lawson, B.: How Designers Think: The Design Process Demystified, 4th edn. Elsevier, Oxford (2005)

    Google Scholar 

  26. Cross, N.: Designerly Ways of Knowing. Springer, London (2006)

    Google Scholar 

  27. Goldschmidt, G.: The dialectics of sketching. Des. Stud. 4, 123–143 (1991)

    Google Scholar 

  28. Goldschmidt, G.: On visual design thinking: the vis kids of architecture. Des. Stud. 15(2), 158–174 (1994)

    Article  Google Scholar 

  29. Cross, N.: Designerly ways of knowing. Des. Stud. 3(4), 221–227 (1982)

    Article  Google Scholar 

  30. Douglas, M., Isherwood, B.: The World of Goods. Allen Lane, London (1979)

    Google Scholar 

  31. Cross, N.: The nature and nurture of design ability. Des. Stud. 11(3), 127–140 (1990)

    Article  Google Scholar 

  32. Peirce, C.: Collected Papers of Charles Sanders Peirce. vols. 1–6 (Eds. C. Hartshorne & P. Weiss) (1931–1935), vols. 7–8 (Ed. A.W. Burks) (1958). Harvard University Press, Cambridge (1958)

    Google Scholar 

  33. March, L.: The logic of design and the question of value. In: The Architecture of Form, pp. 1–40. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  34. Bogen, J.: The other side of the brain II: an appositional mind. Bull. Los Angeles Neurol. Soc. 34(3), 135–162 (1969)

    Google Scholar 

  35. Simon, H.: Models of Discovery and Other Topics in the Methods of Science. Reidel, Dordrecht (1977)

    Book  Google Scholar 

  36. Saunders, D., Thagard, P.: Creativity in computer science. In: Kaufman, J., Baer, J. (eds.) Creativity Across Domains: Faces of the Muse. Lawrence Erlbaum Associates, Mahwah (2005)

    Google Scholar 

  37. Thagard, P., Millgram, E.: Inference to the best plan: a coherence theory of decision. In: Ram, A., Leake, D. (eds.) Goal-Driven Learning, pp. 439–454. MIT Press, Cambridge (1997)

    Google Scholar 

  38. Thagard, P., Croft, D.: Scientific discovery and technological innovation: ulcers, dinosaur extinction, and the programming language java. In: Magnani, L., Nersessian, N., Thagard, P. (eds.) Model-Based Reasoning in Scientific Discovery, pp. 125–137. Kluwer Academic/Plenum Publishers, New York (1999)

    Chapter  Google Scholar 

  39. Ennis, C., Gyeszly, S.: Protocol analysis of the engineering systems design process. Res. Eng. Des. 3(1), 15–22 (1991)

    Article  Google Scholar 

  40. Cross, N.: Design cognition: results from protocol and other empirical studies of design activity. In: Eastman, C., McCracken, W., Newstetter, W. (eds.) Design Knowing and Learning: Cognition in Design Education, pp. 79–104. Elsevier, Oxford (2001)

    Chapter  Google Scholar 

  41. Kavakli, M., Gero, J.: The structure of concurrent cognitive actions: a case study of novice and expert designers. Des. Stud. 23(1), 25–40 (2002)

    Article  Google Scholar 

  42. Kolko, J.: Abductive thinking and sensemaking: the drivers of design synthesis. Des. Issues 26, 15–28 (2010)

    Google Scholar 

  43. Ericsson, K., Simon, H.: Protocol Analysis: Verbal Reports as Data. MIT Press, Cambridge (1993)

    Google Scholar 

  44. van Someren, M., Barnard, Y., Sandberg, J.: The Think Aloud Method: A Practical Guide to Modelling Cognitive Processes. Academic Press, San Diego (1994)

    Google Scholar 

  45. Kan, J., Gero, J.: Acquiring information from linkography in protocol studies of designing. Des. Stud. 29(4), 315–337 (2008)

    Article  Google Scholar 

  46. Gentner, D., Bowdle, B., Wolff, P., Boronat, C.: Metaphor is like analogy. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge (2001)

    Google Scholar 

  47. Grace, K., Saunders, R., Gero, J.: Interpretation-driven visual association. In: Proceedings of the Second International Conference on Computational Creativity, pp. 132–134 (2011)

    Google Scholar 

  48. Lakoff, G., Johnson, M.: The metaphorical structure of the human conceptual system. Cogn. Sci. 4(2), 195–208 (1980)

    Article  Google Scholar 

  49. Hofstadter, D.: Analogy as the core of cognition. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge (2001)

    Google Scholar 

  50. Ward, T.: Analogical distance and purpose in creative thought: mental leaps versus mental hops. In: Holyoak, K., Gentner, D., Kokinov, B. (eds.) Advances in Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and Neural Sciences. NBU Series in Cognitive Science. NBU Press, Sofia (1998)

    Google Scholar 

  51. Heylighen, A.: Building memories. Build. Res. Inf. 35, 90–100 (2007)

    Article  Google Scholar 

  52. Cross, N.: Natural intelligence in design. Des. Stud. 20(1), 25–39 (1999)

    Article  Google Scholar 

  53. Jones, J.: Design methods reviewed. In: Gregory, S. (ed.) The Design Method. Butterworth, London (1966)

    Google Scholar 

  54. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer, Heidelberg (2007)

    Google Scholar 

  55. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  56. Bod, R.: Getting rid of derivational redundancy or how to solve Kuhn’s problem. Mind. Mach. 17(1), 47–66 (2007)

    Article  Google Scholar 

  57. Paavola, S.: Peircean abduction: instinct or inference? Semiotica 153, 131–154 (2005)

    Google Scholar 

  58. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 35–43 (2001)

    Article  Google Scholar 

  59. Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semant. Web Inf. 5(3), 1–22 (2009)

    Article  Google Scholar 

  60. Berners-Lee, T., Connolly, D.: Notation 3 (N3): a readable RDF syntax. W3C team submission. http://www.w3.org/TeamSubmission/n3/

  61. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: a logical framework for the world wide web. Theor. Pract. Log. Prog. 8(3), 249–269 (2008)

    Google Scholar 

  62. De Roo, J.: Euler proof mechanism. http://www.agfa.com/w3c/euler/

  63. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, New York (2004)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers, both within and outside the official reviewing process, for their valuable comments and suggestions to improve the paper. We are confident that these comments and suggestions will be of value also to future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Pauwels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pauwels, P., Bod, R. (2014). Architectural Design Thinking as a Form of Model-Based Reasoning. In: Magnani, L. (eds) Model-Based Reasoning in Science and Technology. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37428-9_32

Download citation

Publish with us

Policies and ethics