Skip to main content

Arterial Flow

PanVascular Medicine
  • 251 Accesses

Abstract

Arterial flow is a three-dimensional unsteady process that is analyzed by measurements as well as physiological, biological, and mechanical experiments and numerical simulations. Few quantities can be noninvasively measured; they encompass cardiac frequency and peripheral arterial blood pressure as well as velocity and flow rate in given arterial stations by functional imaging. The central arterial blood pressure, from which clinicians derive several indices that are related to the physiological state of compartments of the cardiovascular apparatus, is measured using catheter-based transducers. Research is carried out to adequately infer the aortic pressure from measures in peripheral arteries using efficient signal processing.

Blood flows through deformable arteries that dilate and constrict. Expansion of elastic arteries (Windkessel effect) that constitute the upstream compartment of the arterial tree transforms the systolic bolus into a pulsatile flow. Furthermore, the perfusion of the cardiac pump by coronary arteries benefits from the backflow generated by the wall recoil in elastic arteries. However, the arterial deformation is not only passive but also active. Mural cells sense and react to the stress field and adjust the caliber of the arterial lumen accordingly using intra-, auto-, juxta-, and paracrine signaling. The arterial wall is innervated and perfused from the lumen and vasa vasorum, hence receiving nervous and endocrine cues that are transduced for appropriate outputs. The vasomotor tone determines the level of the flow resistance.

Regulation of the arterial flow has been widely investigated by physiologists, exhibiting the intricated and complex mechanisms that control the body’s homeostasis and adapt the local blood supply to the needs. At lower length scales, biologists describe the entire set of regulators and demonstrate their respective role and the functioning of signaling pathways in normal and pathological conditions. Biomechanicians develop new methods to assess the rheology and behavior of living tissues and, in collaboration with applied mathematicians, model physiological and pathophysiological processes. Some mechanical aspects that are easily handled in mechanics (e.g., applied to civil engineering and aeronautics) cannot be directly used in biomechanics. First, the architecture and the structure are much more complicated. Second, blood is carried in arterial lumens surrounded by three-layered walls made of composite materials. Both blood and wall are biological tissues, water being a major component. Hence, the fluid–structure interaction problem requires specific numerical treatment and elaboration of proper algorithms and multiphysics coupling softwares. Numerical tests are nevertheless carried out using simplifying assumptions and can be useful in medical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Regulator of the pattern of tissue development during morphogenesis.

  2. 2.

    β-Adrenoceptors are the predominant subtype in skeletal muscle, mostly of the β2 subtype (7–10 % 1-adrenoceptors) (Lynch and Ryall 2008). However, α-adrenoceptors reside in skeletal muscles; they are expressed in higher proportions in highly vascularized muscles (Lynch and Ryall 2008).

  3. 3.

    The Gq/11-coupled α1-adrenoceptors cause vasoconstriction of large resistance arterioles and support cardiac adaptation to stress. In fact, sympathetic vasoconstriction of large resistance arterioles is induced by both α1- and α2-adrenoceptors.

Abbreviations

Augmentation index (AIx):

Quantity derived from the ascending aortic pressure waveform that is the difference between the first (inflection point of the pressure ramp) and second (true) systolic pressure peaks expressed as a percentage of the pulse pressure.

Diastolic arterial blood pressure (DBP):

Minimal pressure value that is an index of the peripheral vessel state, that is, systemic vascular resistance, for a given blood flow rate, as it can be associated with the incident pressure wave.

Diastolic pressure time interval (DPTI):

Time from the dicrotic notch of the aortic pressure wave to the end of the waveform.

Mean arterial pressure (MAP):

Pressure of the steady component of the blood pressure. It depends on time-average values of stroke volume (left ventricular contractility) and cardiac frequency, on the one hand, as well as vascular impedance (resistance and compliance) on the other.

The mean arterial pressure can be considered in a first approximation as the CO × SVR product. The mean arterial pressure is currently estimated by

$$ {p}_{\mathrm{d}}=\left({p}_{\mathrm{s}}-{p}_{\mathrm{d}}\right)/3. $$
(1)

In fact, the mean arterial pressure is underestimated using 0.333 as a multiplier rather than 0.412 (Meaney et al. 2000):

$$ \mathrm{mAP}={p}_{\mathrm{d}}+0.412\left({p}_{\mathrm{s}}-{p}_{\mathrm{d}}\right). $$
(2)
Pulse pressure (PP):

Difference between the systolic (SBP or p s) and diastolic (DBP or p d) arterial blood pressure. It depends on the stroke volume and the impedance (compliance and resistance) of the arterial bed. It is mainly proportional to stroke volume and inversely proportional to arterial compliance.

Subendocardial viability ratio (SEVR):

DPTI/SPTI ratio.

Systolic arterial blood pressure (SBP):

Peak pressure (maximum of the pressure waveform) that reflects the cardiac output and distensibility of elastic arteries (Windkessel effect), as it is set by the reflected pressure wave.

Systolic pressure time interval (SPTI):

Time from the foot of the aortic pressure wave to the dicrotic notch.

Time to wave reflection (TR):

Time from the foot of the aortic pressure wave to the inflection point of the accelerating phase (first systolic peak).

References

  • Abboud FM (2010) In search of autonomic balance: the good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol 298:R1449–R1467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aletti F, Bassani T, Lucini D, Pagani M, Baselli G (2009) Multivariate decomposition of arterial blood pressure variability for the assessment of arterial control of circulation. IEEE Trans Biomed Eng 56:1781–1790

    Article  PubMed  Google Scholar 

  • Anliker M, Casty M, Friedli P, Kubli R, Keller H (1977) Non-invasive measurement of blood flow. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore, pp 43–88

    Google Scholar 

  • Baliga RR, Rosen SD, Camici PG, Kooner JS (1998) Regional myocardial blood flow redistribution as a cause of postprandial angina pectoris. Circulation 97:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Begis D, Delpuech C, Le Tallec P, Loth L, Thiriet M, Vidrascu M (1988) A finite element model of tracheal collapse. J Appl Physiol 64:1359–1368

    PubMed  CAS  Google Scholar 

  • Bergel DH (1961) The static elastic properties of the arterial wall. J Physiol 156:445–457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cabrera Fischer EI, Bia D, Camus JM, Zocalo Y, de Forteza E, Armentano RL (2006) Adventitia-dependent mechanical properties of brachiocephalic ovine arteries in in vivo and in vitro studies. Acta Physiol 188:103–111

    Article  CAS  Google Scholar 

  • Calhoun D, LeVeque RJ (2000) A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J Comput Phys 157:143–180

    Article  Google Scholar 

  • Čanić S, Mikelić A (2002) Effective equations describing the flow of a viscous incompressible fluid through a long elastic tube. Comptes Rendus Mécanique 330:661–666

    Article  Google Scholar 

  • Čanić S, Mikelić A (2003) Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J Appl Dyn Syst 2:431–463

    Article  Google Scholar 

  • Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23:61–68

    Article  PubMed  CAS  Google Scholar 

  • Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194:4506–4527

    Article  Google Scholar 

  • Chopard B, Luthi PO (1999) Lattice Boltzmann computations and application to physics. Theor Comput Sci 217:115–130

    Article  Google Scholar 

  • Clive S, Jodrell D, Webb D (2001) Gastrin-releasing peptide is a potent vasodilator in humans. Clin Pharmacol Ther 69:252–259

    Article  PubMed  CAS  Google Scholar 

  • Conca C, Pares C, Pironneau O, Thiriet M (1995) A computational model of Navier-Stokes equations with imposed pressure and velocity fluxes. Int J Num Methods Fluids 20:267–287

    Article  Google Scholar 

  • Conca C, San Martin JH, Tucsnak M (2000) Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun Partial Differ Eqs 25:1019–1042

    Article  Google Scholar 

  • Davies JI, Struthers AD (2003) Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens 21:463–472

    Article  PubMed  CAS  Google Scholar 

  • De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712

    Article  PubMed  Google Scholar 

  • Desjardins B, Esteban MJ (2000) On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Commun Partial Differ Eqs 25:1399–1413

    Article  Google Scholar 

  • Desjardins B, Esteban MJ, Grandmont C, Le Tallec P (2001) Weak solutions for a fluid-elastic structure interaction model. Rev Mat Complut 14:523–538

    Google Scholar 

  • Doan TN, Stephans K, Ramirez AN, Glazebrook PA, Andresen MC, Kunze DL (2004) Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. J Neurosci 24:3335–3343

    Article  PubMed  CAS  Google Scholar 

  • Draney MT, Herfkens RJ, Hughes TJ, Pelc NJ, Wedding KL, Zarins CK, Taylor CA (2002) Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Ann Biomed Eng 30:1033–1045

    Article  PubMed  Google Scholar 

  • Errate D, Esteban MJ, Maday Y (1994) Couplage fluide-structure. Un modèle simplifié en dimension 1 [Fluid-structure interaction: a simplified model in dimension 1]. Comptes Rendus des Séances de l’Académie des Sciences Série I Mathématique 318:275–281

    Google Scholar 

  • Fang H, Wang Z, Lin Z, Liu M (2002) Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys Rev E 65:051925

    Article  CAS  Google Scholar 

  • Fernández M, Milišić V, Quarteroni A (2005) Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs. Multiscale Model Simul 4:215–236

    Article  Google Scholar 

  • Flaud P, Quemada D (1988) A structural viscoelastic model of soft tissues. Biorheology 25:95–105

    PubMed  CAS  Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582

    Article  Google Scholar 

  • Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2002) Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J Num Anal 40:376–401

    Article  Google Scholar 

  • Frank O (1899) Die Grundform des arteriellen pulses [The basic shape of the arterial pulse]. Z Biol 37:483–586

    Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Fung YC (1981) Biomechanics. Springer, New York

    Book  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237:620–631

    Google Scholar 

  • Fung YC, Liu SQ, Zhou JB (1993) Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J Biomech Eng 115:453–459

    Article  PubMed  CAS  Google Scholar 

  • Gebber GL, Taylor DG, Weaver LC (1973) Electrophysiological studies on organization of central vasopressor pathways. Am J Physiol 224:470–481

    PubMed  CAS  Google Scholar 

  • Girault V, Glowinski R (1995) Error analysis of a fictitious domain method applied to a Dirichlet problem. Jpn J Ind Appl Maths 12:487–514

    Article  Google Scholar 

  • Girault V, Raviart PA (1979) Finite element methods for Navier-Stokes equations. Springer, New York

    Book  Google Scholar 

  • Gleason RL, Humphrey JD (2004) A Mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41:352–363

    Article  PubMed  CAS  Google Scholar 

  • Glowinski R, Pan TW, Periaux J (1994) A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes. Comput Methods Appl Mech Eng 111:283–303

    Article  Google Scholar 

  • Grandmont C, Maday Y (2000) Existence for an unsteady fluid-structure interaction problem. Math Model Numer Anal 34:609–636

    Article  Google Scholar 

  • Grossini E, Molinari C, Morsanuto V, Mary DA, Vacca G (2013) Intracoronary secretin increases cardiac perfusion and function in anaesthetized pigs through pathways involving β-adrenoceptors and nitric oxide. Exp Physiol 98:973–987

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology, 7th edn. Elsevier/Saunders, Philadelphia

    Google Scholar 

  • Harting J, Venturoli M, Coveney PV (2004) Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear. Philos Trans R Soc Lond Ser A Math Phys Sci 362:1703–1722

    Article  CAS  Google Scholar 

  • Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J Biomech Eng 115:481–488

    Article  PubMed  CAS  Google Scholar 

  • Henry JL, Calaresu FR (1974) Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20:485–504

    PubMed  CAS  Google Scholar 

  • Hildebrandt JR (1974) Central connections of aortic depressor and carotid sinus nerves. Exp Neurol 45:590–605

    Article  PubMed  CAS  Google Scholar 

  • Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  Google Scholar 

  • How JM, Pumpa TJ, Sartor DM (2013) Renal sympathoinhibitory and regional vasodilator responses to cholecystokinin are altered in obesity-related hypertension. Exp Physiol 98:655–664

    Article  PubMed  CAS  Google Scholar 

  • Hudetz AG (1979) Incremental elastic modulus for orthotropic incompressible arteries. J Biomech 12:651–655

    Article  PubMed  CAS  Google Scholar 

  • Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12, 407430

    Article  Google Scholar 

  • Julien C (2006) The enigma of Mayer waves: facts and models. Cardiovasc Res 70:12–21

    Article  PubMed  CAS  Google Scholar 

  • Kamiya A, Kawada T, Mizuno M, Shimizu S, Sugimachi M (2010) Parallel resetting of arterial baroreflex control of renal and cardiac sympathetic nerve activities during upright tilt in rabbits. Am J Physiol Heart Circ Physiol 298:H1966–H1975

    Article  PubMed  CAS  Google Scholar 

  • Klabunde RE (2011) Cardiovascular physiology concepts, 2nd edn. Wolters Kluwer/Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Krafczyc M, Cerrilaza A, Schulz M, Rank E (1998) Analysis of 3D transient blood flow through an artificial aortic valve by lattice-Boltmann methods. J Biomech 31:453–462

    Article  Google Scholar 

  • Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364

    PubMed  CAS  Google Scholar 

  • Learoyd BM, Taylor MG (1996) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18:278–292

    Article  Google Scholar 

  • Lu X, Pandit A, Kassab GS (2004) Biaxial incremental homeostatic elastic moduli of coronary artery: two-layer model. Am J Physiol Heart Circ Physiol 287:1663–1669

    Article  CAS  Google Scholar 

  • Lynch GS, Ryall JG (2008) Role of α-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88:729–767

    Article  PubMed  CAS  Google Scholar 

  • Meaney E, Alva F, Moguel R, Meaney A, Alva J, Webel R (2000) Formula and nomogram for the sphygmomanometric calculation of the mean arterial pressure. Heart 84:64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mei R, Luo LS, Shyy W (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 155:307–330

    Article  CAS  Google Scholar 

  • Mills CJ, Gabe IT, Gault JH, Mason DT, Ross J, Braunwald E, Shillingford JP (1970) Pressure-flow relationships and vascular impedance in man. Cardiovasc Res 4:405–417

    Article  PubMed  CAS  Google Scholar 

  • Milnor WR (1982) Hemodynamics. Williams & Wilkins, Baltimore

    Google Scholar 

  • Mironneau J (1976) Relationship between contraction and transmembrane ionic currents in voltage-clamped uterine smooth muscle. In: Bulbring E, Shuba MF (eds) Physiology of the smooth muscle. Raven, New York

    Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299

    Article  PubMed  CAS  Google Scholar 

  • Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1 + smooth muscle progenitor cells. Proc Natl Acad Sci USA 105:9349–9354

    Article  PubMed Central  PubMed  Google Scholar 

  • Peiro J, Sherwin SJ, Parker KH, Franke V, Formaggia L, Lamponi D, Quarteroni A (2003) Numerical simulation of arterial pulse propagation using one-dimensional models. In: Collins MW, Pontrelli G, Atherton MA (eds) Wall-fluid interactions in physiological flows, advances in computational bioengineering. WIT Press, Ashurst

    Google Scholar 

  • Pelletier D, Fortin A, Camarero R (1989) Are FEM solutions of incompressible flows really incompressible? Int J Num Methods Fluids 9:99–112

    Article  Google Scholar 

  • Pinto JG, Fung YC (1973) Mechanical properties of the stimulated papillary muscle in quick-release experiments. J Biomech 6:617–630

    Article  PubMed  CAS  Google Scholar 

  • Pironneau O (1988) Methodes d’elements finis pour les fluides [The finite element methods for fluids]. Masson, Paris

    Google Scholar 

  • Pontrelli G, Rossoni E (2003) Numerical modelling of the pressure wave propagation in the arterial flow. Int J Num Methods Fluids 43:651–671

    Article  Google Scholar 

  • Prabhakar NR, Peng YJ (2004) Peripheral chemoreceptors in health and disease. J Appl Physiol 96:359–366

    Article  PubMed  CAS  Google Scholar 

  • Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of PDE’s and ODE’s for blood flow simulations. Multiscale Model Simul 1:173–195

    Article  Google Scholar 

  • Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Visual Sci 4:111–124

    Article  Google Scholar 

  • Rey S, Del Rio R, Alcayaga J, Iturriaga R (2006) Endothelins in the cat petrosal ganglion and carotid body: effects and immunolocalization. Brain Res 1069:154–158

    Article  PubMed  CAS  Google Scholar 

  • Rogers G, Oosthuyse T (2000) A comparison of the indirect estimate of mean arterial pressure calculated by the conventional equation and calculated to compensate for a change in heart rate. Int J Sports Med 21:90–95

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gayo M, Gonzalez MC, Fernandez-Alfonso S (2006) Vasodilatory effects of cholecystokinin: new role for an old peptide? Regul Pept 137:179–184

    Article  PubMed  CAS  Google Scholar 

  • Sawmiller DR, Henning RJ, Cuevas J, Dehaven WI, Vesely DL (2004) Coronary vascular effects of vasoactive intestinal peptide in the isolated perfused rat heart. Neuropeptides 38:289–297

    Article  PubMed  CAS  Google Scholar 

  • Schmid F, Sommer G, Rappolt M, Schulze-Bauer CA, Regitnig P, Holzapfel GA, Laggner P, Amenitsch H (2005) In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. J Synchrotron Radiat 12:727–733

    Article  PubMed  CAS  Google Scholar 

  • Schultz HD, Li YL (2007) Carotid body function in heart failure. Respir Physiol Neurobiol 157:171–185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Segers P, Dubois F, De Wachter D, Verdonck P (1998) Role and relevancy of a cardiovascular simulator. J Cardiovasc Eng 3:48–56

    Google Scholar 

  • Sherwin SJ, Franke V, Peiro J, Parker KH (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250

    Article  Google Scholar 

  • Sin PY, Galletly DC, Tzeng YC (2010) Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am J Physiol Heart Circ Physiol 298:H1588–H1599

    Article  PubMed  CAS  Google Scholar 

  • Smith NP, Pullan AJ, Hunter PJ (2002) An anatomically based model of transient coronary blood flow in the heart. SIAM J Appl Maths 62:990–1018

    Article  Google Scholar 

  • Snyder DW, Gebber GL (1973) Relationships between medullary depressor region and central vasopressor pathways. Am J Physiol 225:1129–1137

    PubMed  CAS  Google Scholar 

  • Soderman C, Eriksson LS, Juhlin-Dannfelt A, Lundberg JM, Broman L, Holmgren A (1993) Effect of vasoactive intestinal polypeptide (VIP) on pulmonary ventilation-perfusion relationships and central haemodynamics in healthy subjects. Clin Physiol 13:677–685

    Article  PubMed  CAS  Google Scholar 

  • Stergiopulos N, Meister JJ (1995) Biomechanical and physiological aspects of arterial vasomotion. In: Jaffrin MY, Caro CG (eds) Biological flows. Plenum Press, New York

    Google Scholar 

  • Stergiopulos N, Tardy Y, Meister J-J (1993) Nonlinear separation of forward and backward running waves in elastic conduits. J Biomech 26:201–209

    Article  PubMed  CAS  Google Scholar 

  • Stergiopulos N, Meister J-J, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol Heart Circ Physiol 268:1540–1548

    Google Scholar 

  • Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Physiol Heart Circ Physiol 276:81–88

    Google Scholar 

  • Takahashi T, Tucsnak M (2004) Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J Math Fluid Mech 6:53–77

    Article  Google Scholar 

  • Weaver LC, Gebber GL (1974) Electrophysiological analysis of neural events accompanying active dilatation. Am J Physiol 226:84–89

    PubMed  CAS  Google Scholar 

  • Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2:121–143

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Zhou J, Fung YC (1995) Bending of blood vessel wall: stress-strain laws of the intima-media and adventitial layers. J Biomech Eng 117:136–145

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Zhou J, Fung YC (1993) Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am J Physiol Heart Circ Physiol 265:52–60

    Google Scholar 

  • Zulliger MA, Rachev A, Stergiopulos N (2004a) A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am J Physiol Heart Circ Physiol 287:1335–1343

    Article  Google Scholar 

  • Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004b) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37:989–1000

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thiriet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Thiriet, M. (2014). Arterial Flow. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Physiology and Pathophysiology of Arterial Flow
    Published:
    03 June 2014

    DOI: https://doi.org/10.1007/978-3-642-37393-0_26-2

  2. Original

    Arterial Flow
    Published:
    03 March 2014

    DOI: https://doi.org/10.1007/978-3-642-37393-0_26-1