Skip to main content

Persistent Pulmonary Hypertension of the Newborn

  • Living reference work entry
  • First Online:
PanVascular Medicine
  • 271 Accesses

Abstract

At birth, the fetal cardiopulmonary system rapidly establishes the lung as the organ of gas exchange by decreasing pulmonary vascular resistance (PVR) and increasing pulmonary blood flow. Pulmonary artery pressure and vascular resistance continue to slowly decrease for another 2–3 weeks after birth. The vasoconstrictive response to hypoxia is retained into adulthood, and pulmonary hypertension can be easily triggered in the newborn period by hypoxic lung disease, apnea, or other causes. As development continues through infancy, normal lung function and growth requires maintenance of low pulmonary vascular resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abman SH (2009) Role of endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Annu Rev Med 60:13–23

    PubMed  CAS  Google Scholar 

  • Abman SH, Ivy DD (2011) Recent progress in understanding pediatric pulmonary hypertension. Curr Opin Pediatr 23(3):298–304

    PubMed Central  PubMed  Google Scholar 

  • Afshar S, Gibson LL, Yuhanna IS, Sherman TS, Kerecman JD, Grubb PH, Yoder BA, McCurnin DC, Shaul PW (2003) Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease. Am J Physiol Lung Cell Mol Physiol 284(5):L749–L758

    PubMed  CAS  Google Scholar 

  • Aikio O, Metsola J, Vuolteenaho R, Perhomaa M, Hallman M (2012) Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J Pediatr (in press)

    Google Scholar 

  • Alano MA, Ngougmna E, Ostrea EM Jr, Konduri GG (2001) Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 107(3):519–523

    PubMed  CAS  Google Scholar 

  • Ambalavanan N, Bulger A, Murphy-Ullrich J, Oparil S, Chen Y (2005) Endothelin-A receptor blockade prevents and partially reverses neonatal hypoxic pulmonary vascular remodeling. Pediatr Res 57:631–636

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ananthakrishnan M, Barr FE, Summar ML, Smith HA, Kaplowitz M, Cunningham G, Magarik J, Zhang Y, Fike CD (2009) l-Citrulline ameliorates chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297:L506–L511

    PubMed  CAS  Google Scholar 

  • Andrade SE, McPhillips H, Loren D, Raebel MA, Lane K, Livingston J, Boudreau DM, Smith DH, Davis RL, Willy ME, Platt R (2009) Antidepressant medication use and risk of persistent pulmonary hypertension of the newborn. Pharmacoepidemiol Drug Saf 18(3):246–252

    PubMed  Google Scholar 

  • Atz AM, Wessel DL (1999) Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 91:307–310

    PubMed  CAS  Google Scholar 

  • Ball MK, Waypa GB, Mungai PT, Nielsen J, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, Shah SJ, Schumacker PT (2013) Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle HIF-1alpha. Am J Resp Crit Care Med (in press)

    Google Scholar 

  • Baquero H, Soliz A, Neira F, Venegas ME, Sola A (2006) Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 117(4):1077–1083

    PubMed  Google Scholar 

  • Barr FE, Tirona RG, Taylor MB, Rice G, Arnold J, Cunningham G, Smith HA, Campbell A, Canter JA, Christian KG, Drinkwater DC, Scholl F, Kavanaugh-McHugh A, Summar ML (2007) Pharmacokinetics and safety of intravenously administered citrulline in children undergoing congenital heart surgery: potential therapy for postoperative pulmonary hypertension. J Thorac Cardiovasc Surg 134:319–326

    PubMed  CAS  Google Scholar 

  • Beghetti M, Hoeper MM, Kiely DG, Carlsen J, Schwierin B, Segal ES, Humbert M (2008) Safety experience with bosentan in 146 children 2–11 years old with pulmonary arterial hypertension: results from the European Postmarketing Surveillance program. Pediatr Res 64(2):200–204

    PubMed  CAS  Google Scholar 

  • Bhaskaran M, Xi D, Wang Y, Huang C, Narasaraju T, Shu W, Zhao C, Xiao X, More S, Breshears M, Liu L (2012) Identification of microRNAs changed in the neonatal lungs in response to hyperoxia exposure. Physiol Genomics 44(20):970–980

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bindl L, Fahnenstich H, Peukert U (1994) Aerosolised prostacyclin for pulmonary hypertension in neonates. Arch Dis Child Fetal Neonatal Ed 71(3):F214–F216

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bishop NB, Stankiewicz P, Steinhorn RH (2011) Alveolar capillary dysplasia. Am J Respir Crit Care Med 184(2):172–179

    PubMed Central  PubMed  Google Scholar 

  • Black SM, Johengen MJ, Soifer SJ (1998) Coordinated regulation of genes of the nitric oxide and endothelin pathways during the development of pulmonary hypertension in fetal lambs. Pediatr Res 44:821–830

    PubMed  CAS  Google Scholar 

  • Brahmajothi MV, Mason SN, Whorton AR, McMahon TJ, Auten RL (2010) Transport rather than diffusion-dependent route for nitric oxide gas activity in alveolar epithelium. Free Radic Biol Med 49(2):294–300

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brannon TS, North AJ, Wells LB, Shaul PW (1994) Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J Clin Invest 93:2230–2235

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brannon TS, MacRitchie AN, Jaramillo MA, Sherman TS, Yuhanna IS, Margraf LR, Shaul PW (1998) Ontogeny of cyclooxygenase-1 and cyclooxygenase-2 gene expression in ovine lung. Am J Physiol 274(1 Pt 1):L66–L71

    PubMed  CAS  Google Scholar 

  • Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92:683–691

    PubMed  CAS  Google Scholar 

  • Byers HM, Dagle JM, Klein JM, Ryckman KK, McDonald EL, Murray JC, Borowski KS (2012) Variations in CRHR1 are associated with persistent pulmonary hypertension of the newborn. Pediatr Res 71(2):162–167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cerro MJ, Abman S, Diaz G, Freudenthal AH, Freudenthal F, Harikrishnan S, Haworth SG, Ivy D, Lopes AA, Raj JU, Sandoval J, Stenmark K, Adatia I (2011) A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI pediatric taskforce, Panama 2011. Pulm Circ 1(2):286–298

    PubMed Central  PubMed  Google Scholar 

  • Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL, Mitchell AA (2006) Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 354(6):579–587

    PubMed  CAS  Google Scholar 

  • Chandrasekar I, Eis A, Konduri GG (2008) Betamethasone attenuates oxidant stress in endothelial cells from fetal lambs with persistent pulmonary hypertension. Pediatr Res 63(1):67–72

    PubMed  CAS  Google Scholar 

  • Chen B, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Russell JA, Farrow KN, Steinhorn RH (2009) Regulation of phosphodiesterase 3 in the pulmonary arteries during the perinatal period in sheep. Pediatr Res 66(6):682–687

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chester M, Tourneux P, Seedorf G, Grover TR, Gien J, Abman SH (2009) Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 297(2):L318–L325

    PubMed Central  PubMed  CAS  Google Scholar 

  • Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327(2):70–75

    PubMed  CAS  Google Scholar 

  • Coggins MP, Bloch KD (2007) Nitric oxide in the pulmonary vasculature. Arterioscler Thromb Vasc Biol 27(9):1877–1885

    PubMed  CAS  Google Scholar 

  • Cua CL, Blankenship A, North AL, Hayes J, Nelin LD (2007) Increased incidence of idiopathic persistent pulmonary hypertension in Down syndrome neonates. Pediatr Cardiol 28(4):250–254

    PubMed  CAS  Google Scholar 

  • Dawes GS, Mott JC, Widdicombe JG, Wyatt DG (1953) Changes in the lungs of the newborn lamb. J Physiol 121:141–162

    PubMed Central  PubMed  CAS  Google Scholar 

  • de Visser YP, Walther FJ, Laghmani el H, Boersma H, van der Laarse A, Wagenaar GT (2009) Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res 10:30

    PubMed Central  PubMed  Google Scholar 

  • Deb B, Bradford K, Pearl RG (2000) Additive effects of inhaled nitric oxide and intravenous milrinone in experimental pulmonary hypertension. Crit Care Med 28:795–799

    PubMed  CAS  Google Scholar 

  • Delaney C, Gien J, Grover TR, Roe G, Abman SH (2011) Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol 301(6):L937–L944

    PubMed Central  PubMed  CAS  Google Scholar 

  • Delaney C, Gien J, Roe G, Isenberg N, Kailey J, Abman SH (2013) Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 304(12):L894–L901

    PubMed  CAS  Google Scholar 

  • Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, Sutor S, Roden AC, Asmann YW, Prakash YS, Wigle DA (2012) MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics 13:204

    PubMed Central  PubMed  CAS  Google Scholar 

  • Farrow KN, Steinhorn RH (2011) Phosphodiesterases: emerging therapeutic targets for neonatal pulmonary hypertension. Handb Exp Pharmacol 204:251–277

    PubMed  CAS  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Reda WJ, Wedgwood S, Czech L, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295(6):L979–L987

    PubMed Central  PubMed  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2010a) Superoxide dismutase and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299(1):L109–L116

    PubMed Central  PubMed  CAS  Google Scholar 

  • Farrow KN, Wedgwood S, Lee KJ, Czech L, Gugino SF, Lakshminrusimha S, Schumacker PT, Steinhorn RH (2010b) Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol 174(3):272–281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fike CD, Kaplowitz MR, Rehorst-Paea LA, Nelin LD (2000) l-Arginine increases nitric oxide production in isolated lungs of chronically hypoxic newborn pigs. J Appl Physiol 88(5):1797–1803

    PubMed  CAS  Google Scholar 

  • Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2013) Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. Antioxid Redox Signal 18(14):1727–1738

    PubMed  CAS  Google Scholar 

  • Findlay RD, Taeusch W, Walther FJ (1996) Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics 97:48–52

    PubMed  CAS  Google Scholar 

  • Fliman PJ, de Regnier RA, Kinsella JP, Reynolds M, Rankin LL, Steinhorn RH (2006) Neonatal extracorporeal life support: impact of new therapies on survival. J Pediatr 148(5):595–599

    PubMed  Google Scholar 

  • Fornaro E, Li D, Pan J, Belik J (2007) Prenatal exposure to fluoxetine induces fetal pulmonary hypertension in the rat. Am J Respir Crit Care Med 176(10):1035–1040

    PubMed  CAS  Google Scholar 

  • Giaid A, Yanagisawa M, Lagleben D, Michel RP, Levy R, Shennib H, Kimura S (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    PubMed  CAS  Google Scholar 

  • Gien J, Seedorf GJ, Balasubramaniam V, Tseng N, Markham N, Abman SH (2008) Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro. Am J Physiol Lung Cell Mol Physiol 295(4):L680–L687

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gien J, Tseng N, Seedorf G, Roe G, Abman SH (2013) Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr Res 73(3):252–262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goissen C, Ghyselen L, Tourneux P, Krim G, Storme L, Bou P, Maingourd Y (2008) Persistent pulmonary hypertension of the newborn with transposition of the great arteries: successful treatment with bosentan. Eur J Pediatr 167(4):437–440

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Fabres J, D’Apremont I, Urcelay G, Avaca M, Gandolfi C, Kattan J (2010) Randomized controlled trial of early compared with delayed use of inhaled nitric oxide in newborns with a moderate respiratory failure and pulmonary hypertension. J Perinatol 30(6):420–424

    PubMed  CAS  Google Scholar 

  • Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Mitchell AA (2007) Risk factors for persistent pulmonary hypertension of the newborn. Pediatrics 120(2):e272–e282

    PubMed  Google Scholar 

  • Herrera EA, Pulgar VM, Riquelme RA, Sanhueza EM, Reyes RV, Ebensperger G, Parer JT, Valdez EA, Giussani DA, Blanco CE, Hanson MA, Llanos AJ (2007) High-altitude chronic hypoxia during gestation and after birth modifies cardiovascular responses in newborn sheep. Am J Physiol Regul Integr Comp Physiol 292(6):R2234–R2240

    PubMed  CAS  Google Scholar 

  • Humbert M, McLaughlin VV (2009) The 4th world symposium on pulmonary hypertension. Introduction. J Am Coll Cardiol 54(1 Suppl):S1–S2

    PubMed  Google Scholar 

  • Ivy DD, Ziegler JW, Dubus MF, Fox JJ, Kinsella JP, Abman SH (1996) Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetal lung. Pediatr Res 39:435–442

    PubMed  CAS  Google Scholar 

  • Ivy DD, Abman SH, Barst RJ, Berger RMF, Bonnet DTF, Haworth SG, Raj JU, Rosenzweig EB, Schulze Neick I, Steinhorn RH, Beghetti M (2013) Pediatric pulmonary hypertension. J Am Coll Cardiol (in press)

    Google Scholar 

  • Jones RL, Qian Y, Wong HN, Chan H, Yim AP (1997) Prostanoid action on the human pulmonary vascular system. Clin Exp Pharmacol Physiol 24(12):969–972

    PubMed  CAS  Google Scholar 

  • Kalinichenko VV, Lim L, Stolz DB, Shin B, Rausa FM, Clark J, Whitsett JA, Watkins SC, Costa RH (2001) Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol 235(2):489–506

    PubMed  CAS  Google Scholar 

  • Kallen B, Olausson PO (2008) Maternal use of selective serotonin re-uptake inhibitors and persistent pulmonary hypertension of the newborn. Pharmacoepidemiol Drug Saf 17(8):801–806

    PubMed  Google Scholar 

  • Keller RL, Moore P, Teitel D, Hawgood S, McQuitty J, Fineman JR (2006) Abnormal vascular tone in infants and children with lung hypoplasia: findings from cardiac catheterization and the response to chronic therapy. Pediatr Crit Care Med 7(6):589–594

    PubMed  Google Scholar 

  • Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, Moore P, Nobuhara KK, Hawgood S, Fineman JR (2010) Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med 182(4):555–561

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kelly LK, Porta NF, Goodman DM, Carroll CL, Steinhorn RH (2002) Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide. J Pediatr 141:830–832

    PubMed  CAS  Google Scholar 

  • Kieler H, Artama M, Engeland A, Ericsson O, Furu K, Gissler M, Nielsen RB, Norgaard M, Stephansson O, Valdimarsdottir U, Zoega H, Haglund B (2012) Selective serotonin reuptake inhibitors during pregnancy and risk of persistent pulmonary hypertension in the newborn: population based cohort study from the five Nordic countries. BMJ 344:d8012

    PubMed  Google Scholar 

  • Kinsella JP, Parker TA, Ivy DD, Abman SH (2003) Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J Pediatr 142(4):397–401

    PubMed  CAS  Google Scholar 

  • Konduri GG, Solimani A, Sokol GM, Singer J, Ehrenkranz RA, Singhal N, Wright LL, Van Meurs K, Stork E, Kirpalani H, Peliowski A, Group, NINOS (2004) A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure. Pediatrics 113:559–564

    PubMed  Google Scholar 

  • Konduri GG, Vohr B, Robertson C, Sokol GM, Solimano A, Singer J, Ehrenkranz RA, Singhal N, Wright LL, Van Meurs K, Stork E, Kirpalani H, Peliowski A, Johnson Y (2007) Early inhaled nitric oxide therapy for term and near-term newborn infants with hypoxic respiratory failure: neurodevelopmental follow-up. J Pediatr 150(3):235–240, 240.e1

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koppel R, Han RN, Cox D, Tanswell AK, Rabinovitch M (1994) Alpha 1-antitrypsin protects neonatal rats from pulmonary vascular and parenchymal effects of oxygen toxicity. Pediatr Res 36(6):763–770

    PubMed  CAS  Google Scholar 

  • Kumar VH, Hutchison AA, Lakshminrusimha S, Morin FC 3rd, Wynn RJ, Ryan RM (2007) Characteristics of pulmonary hypertension in preterm neonates. J Perinatol 27(4):214–219

    PubMed  CAS  Google Scholar 

  • Kumar VH, Swartz DD, Rashid N, Lakshminrusimha S, Ma C, Ryan RM, Morin FC 3rd (2010) Prostacyclin and milrinone by aerosolization improve pulmonary hemodynamics in newborn lambs with experimental pulmonary hypertension. J Appl Physiol 109(3):677–684

    PubMed  CAS  Google Scholar 

  • Kunig AM, Parker TA, Nogee LM, Abman SH, Kinsella JP (2007) ABCA3 deficiency presenting as persistent pulmonary hypertension of the newborn. J Pediatr 151(3):322–324

    PubMed  CAS  Google Scholar 

  • Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thebaud B (2005) Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med 172(6):750–756

    PubMed  Google Scholar 

  • Lakshminrusimha S (2012) The pulmonary circulation in neonatal respiratory failure. Clin Perinatol 39(3):655–683

    PubMed Central  PubMed  Google Scholar 

  • Lakshminrusimha S, Steinhorn RH (2013) Inodilators in nitric oxide resistant persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 14(1):107–109

    PubMed  Google Scholar 

  • Lakshminrusimha S, Russell J, Wedgwood S, Gugino S, Kazzaz J, Davis J, Steinhorn RH (2006a) Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med 174:1370–1377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin FC 3rd, Swartz DD, Kumar VH (2006b) Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res 59(1):137–141

    PubMed Central  PubMed  Google Scholar 

  • Lakshminrusimha S, Russell JA, Steinhorn RH, Swartz DD, Ryan RM, Gugino SF, Wynn KA, Kumar VH, Mathew B, Kirmani K, Morin FC 3rd (2007) Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen. Pediatr Res 62(3):313–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lakshminrusimha S, Porta NF, Farrow KN, Chen B, Gugino SF, Kumar VH, Russell JA, Steinhorn RH (2009a) Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 10(1):106–112

    PubMed Central  PubMed  Google Scholar 

  • Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, Russell JA, Steinhorn RH (2009b) Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res 66(5):539–544

    PubMed Central  PubMed  Google Scholar 

  • Lakshminrusimha S, Steinhorn RH, Wedgwood S, Savorgnan F, Nair J, Mathew B, Gugino SF, Russell JA, Swartz DD (2011) Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J Appl Physiol 111(5):1441–1447

    PubMed Central  PubMed  Google Scholar 

  • Lammers AE, Adatia I, Cerro MJ, Diaz G, Freudenthal AH, Freudenthal F, Harikrishnan S, Ivy D, Lopes AA, Raj JU, Sandoval J, Stenmark K, Haworth SG (2011) Functional classification of pulmonary hypertension in children: report from the PVRI pediatric taskforce, Panama 2011. Pulm Circ 1(2):280–285

    PubMed Central  PubMed  Google Scholar 

  • Lapointe A, Barrington KJ (2011) Pulmonary hypertension and the asphyxiated newborn. J Pediatr 158(2 Suppl):e19–e24

    PubMed  Google Scholar 

  • Lee KJ, Berkelhamer SK, Kim GA, Taylor JM, O’Shea KM, Steinhorn RH, Farrow KN (2013) Disrupted pulmonary artery cGMP signaling in mice with hyperoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol (in press)

    Google Scholar 

  • Liu J, Zelko I, Erbynn E, Sham J, Folz R (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2–L10

    PubMed  CAS  Google Scholar 

  • Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH (1998) Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group. J Pediatr 132:40–47

    PubMed  CAS  Google Scholar 

  • Maiya S, Hislop AA, Flynn Y, Haworth SG (2006) Response to bosentan in children with pulmonary hypertension. Heart 92(5):664–670

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mata-Greenwood E, Jenkins C, Farrow KN, Konduri GG, Russell JA, Lakshminrusimha S, Black SM, Steinhorn RH (2006) eNOS function is developmentally regulated: uncoupling of eNOS occurs postnatally. Am J Physiol Lung Cell Mol Physiol 290(2):L232–L241

    PubMed Central  PubMed  CAS  Google Scholar 

  • McNamara PJ, Laique F, Muang-In S, Whyte HE (2006) Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care 21(2):217–222

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Shivananda SP, Sahni M, Freeman D, Taddio A (2012) Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn (PPHN) and suboptimal response to inhaled nitric oxide. Pediatr Crit Care Med 14(1):74–84

    Google Scholar 

  • Mohamed WA, Ismail M (2012) A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol 32(8):608–613

    PubMed  CAS  Google Scholar 

  • Mourani PM, Ivy DD, Gao D, Abman SH (2004) Pulmonary vascular effects of inhaled nitric oxide and oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med 170(9):1006–1013

    PubMed  Google Scholar 

  • Mourani PM, Sontag MK, Ivy DD, Abman SH (2009) Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J Pediatr 154(3):379–384, 384 e1-2

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3):238–248

    PubMed  CAS  Google Scholar 

  • Nakwan N, Choksuchat D, Saksawad R, Thammachote P (2009) Successful treatment of persistent pulmonary hypertension of the newborn with bosentan. Acta Paediatr 98(10):1683–1685

    PubMed  CAS  Google Scholar 

  • Neonatal Inhaled Nitric Oxide Study Group (1997) Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 99:838–845

    Google Scholar 

  • Occhiogrosso M, Omran SS, Altemus M (2012) Persistent pulmonary hypertension of the newborn and selective serotonin reuptake inhibitors: lessons from clinical and translational studies. Am J Psychiatry 169(2):134–140

    PubMed  Google Scholar 

  • Oishi P, Datar SA, Fineman JR (2011) Advances in the management of pediatric pulmonary hypertension. Respir Care 56(9):1314–1339, discussion 1339-40

    PubMed  Google Scholar 

  • Olmsted K, Oluola O, Parthiban A, Raghuveer T (2007) Can inhaled prostacyclin stimulate surfactant in ELBW infants? J Perinatol 27(11):724–726

    PubMed  CAS  Google Scholar 

  • Park HS, Park JW, Kim HJ, Choi CW, Lee HJ, Kim BI, Chun YS (2013) Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. Am J Respir Cell Mol Biol 48(1):105–113

    PubMed  CAS  Google Scholar 

  • Pearson DL, Dawling S, Walsh WF, Haines JL, Christman BW, Bazyk A, Scott N, Summar ML (2001) Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med 344(24):1832–1838

    PubMed  CAS  Google Scholar 

  • Perez M, Lakshminrusimha S, Wedgwood S, Czech L, Gugino SF, Russell JA, Farrow KN, Steinhorn RH (2012) Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 302(6):L595–L603

    PubMed Central  PubMed  CAS  Google Scholar 

  • Perkin RM, Levin DL, Clark R (1980) Serum salicylate levels and right-to-left ductus shunts in newborn infants with persistent pulmonary hypertension. J Pediatr 96:721–726

    PubMed  CAS  Google Scholar 

  • Porta NF, Steinhorn RH (2012) Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol 39(1):149–164

    PubMed Central  PubMed  Google Scholar 

  • Rairigh RL, Parker T, Ivy DD, Kinsella JP, Fa ID, Abman SH (2001) Role of inducible nitric oxide synthase in the pulmonary vascular response to birth-related stimuli in the ovine fetus. Circ Res 88:721–726

    PubMed  CAS  Google Scholar 

  • Ramachandrappa A, Rosenberg ES, Wagoner S, Jain L (2011) Morbidity and mortality in late preterm infants with severe hypoxic respiratory failure on extra-corporeal membrane oxygenation. J Pediatr 159(2):192–198, e3

    PubMed Central  PubMed  Google Scholar 

  • Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC (1998) Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: a randomized study. Circulation 97(3):257–262

    PubMed  CAS  Google Scholar 

  • Reller MD, Morton MJ, Reid DL, Thornburg KL (1987) Fetal lamb ventricles respond differently to filling and arterial pressures and to in utero ventilation. Pediatr Res 22(6):621–626

    PubMed  CAS  Google Scholar 

  • Reynolds EW, Ellington JG, Vranicar M, Bada HS (2004) Brain-type natriuretic peptide in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatrics 114(5):1297–1304

    PubMed  Google Scholar 

  • Rosenzweig EB, Ivy DD, Widlitz A, Doran A, Claussen LR, Yung D, Abman SH, Morganti A, Nguyen N, Barst RJ (2005) Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol 46(4):697–704

    PubMed  CAS  Google Scholar 

  • Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC, Gien J, Tang JR, Abman SH (2011) Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiol Lung Cell Mol Physiol 301(6):L860–L871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rudolph AM, Yuan S (1966) Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest 45(3):399–411

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sanchez LS, Filippov G, Zapol WM, Jones RC, Bloch KD (1995) cGMP-binding, cGMP-specific phosphodiesterase gene expression is regulated during lung development. Pediatr Res 37:348A

    Google Scholar 

  • Saugstad OD (2010) Resuscitation of newborn infants: from oxygen to room air. Lancet (in press)

    Google Scholar 

  • Shah PS, Hellmann J, Adatia I (2004) Clinical characteristics and follow up of Down syndrome infants without congenital heart disease who presented with persistent pulmonary hypertension of newborn. J Perinat Med 32(2):168–170

    PubMed  Google Scholar 

  • Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin FC 3rd (1997) Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol 272(5 Pt 1):L1005–L1012

    PubMed  CAS  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43((12 Suppl S)):5S–12S

    PubMed  Google Scholar 

  • Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl):S43–S54

    PubMed  Google Scholar 

  • Smith HA, Canter JA, Christian KG, Drinkwater DC, Scholl FG, Christman BW, Rice G, Barr FE, Summar ML (2006) Nitric oxide precursors and congenital heart surgery: a randomized controlled trial of oral citrulline. J Thorac Cardiovasc Surg 132:56–65

    Google Scholar 

  • Soditt V, Aring C, Groneck P (1997) Improvement of oxygenation induced by aerosolized prostacyclin in a preterm infant with persistent pulmonary hypertension of the newborn. Intensive Care Med 23:1275–1278

    PubMed  CAS  Google Scholar 

  • Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, Ou Z, Wiszniewska J, Driscoll DJ, Maisenbacher MK, Bolivar J, Bauer M, Zackai EH, McDonald-McGinn D, Nowaczyk MM, Murray M, Hustead V, Mascotti K, Schultz R, Hallam L, McRae D, Nicholson AG, Newbury R, Durham-O’Donnell J, Knight G, Kini U, Shaikh TH, Martin V, Tyreman M, Simonic I, Willatt L, Paterson J, Mehta S, Rajan D, Fitzgerald T, Gribble S, Prigmore E, Patel A, Shaffer LG, Carter NP, Cheung SW, Langston C, Shaw-Smith C (2009) Genomic and genetic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84(6):780–791

    PubMed Central  PubMed  CAS  Google Scholar 

  • Steinhorn RH (2010) Neonatal pulmonary hypertension. Pediatr Crit Care Med 11(2 Suppl):S79–S84

    PubMed Central  PubMed  Google Scholar 

  • Steinhorn RH, Russell JA, Morin FC 3rd (1995) Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol 268(4 Pt 2):H1483–H1489

    PubMed  CAS  Google Scholar 

  • Steinhorn RH, Albert G, Swartz DD, Russell JA, Levine CR, Davis JM (2001) Recombinant human superoxide dismutase enhances the effect of inhaled nitric oxide in persistent pulmonary hypertension. Am J Respir Crit Care Med 164(5):834–839

    PubMed  CAS  Google Scholar 

  • Steinhorn RH, Kinsella JP, Pierce C, Butrous G, Dilleen M, Oakes M, Wessel DL (2009) Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 155(6):841–847

    PubMed  CAS  Google Scholar 

  • Tajchman UW, Tuder RM, Horan M, Parker TA, Abman SH (1997) Persistent eNOS in lung hypoplasia caused by left pulmonary artery ligation in the ovine fetus. Am J Physiol 272(5 Pt 1):L969–L978

    PubMed  CAS  Google Scholar 

  • Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112(16):2477–2486

    PubMed  CAS  Google Scholar 

  • Thelitz S, Oishi P, Sanchez LS, Bekker JM, Ovadia B, Johengen MJ, Black SM, Fineman JR (2004) Phosphodiesterase-3 inhibition prevents the increase in pulmonary vascular resistance following inhaled nitric oxide withdrawal in lambs. Pediatr Crit Care Med 5(3):234–239

    PubMed  Google Scholar 

  • Thoonen R, Sips PY, Bloch KD, Buys ES (2013) Pathophysiology of hypertension in the absence of nitric oxide/cyclic GMP signaling. Curr Hypertens Rep 15(1):47–58

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tiktinsky MH, Morin FC III (1993) Increasing oxygen tension dilates fetal pulmonary circulation via endothelium-derived relaxing factor. Am J Physiol Heart Circ Physiol 265:H376–H380

    CAS  Google Scholar 

  • Tissot C, Ivy DD, Beghetti M (2010) Medical therapy for pediatric pulmonary arterial hypertension. J Pediatr 157(4):528–532

    PubMed Central  PubMed  Google Scholar 

  • UK Collaborative ECMO Trial Group (1996) UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. Lancet 348:75–82

    Google Scholar 

  • Vadivel A, Aschner JL, Rey-Parra GJ, Magarik J, Zeng H, Summar M, Eaton F, Thebaud B (2010) l-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats. Pediatr Res 68(6):519–525

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van Marter LJ, Leviton A, Allred EN, Pagano M, Sullivan KF, Cohen A, Epstein MF (1996) Persistent pulmonary hypertension of the newborn and smoking and aspirin and nonsteroidal antiinflammatory drug consumption during pregnancy. Pediatrics 97(5):658–663

    PubMed  Google Scholar 

  • Van Marter LJ, Hernandez-Diaz S, Werler MM, Louik C, Mitchell AA (2013) Nonsteroidal antiinflammatory drugs in late pregnancy and persistent pulmonary hypertension of the newborn. Pediatrics 131(1):79–87

    PubMed Central  PubMed  Google Scholar 

  • Vijlbrief DC, Benders MJ, Kemperman H, van Bel F, de Vries WB (2011) B-type natriuretic peptide and rebound during treatment for persistent pulmonary hypertension. J Pediatr 160(1):111–115.e1

    PubMed  Google Scholar 

  • Villegas LR, Kluck D, Field C, Oberley-Deegan RE, Woods C, Yeager ME, El Kasmi KC, Savani RC, Bowler RP, Nozik-Grayck E (2013) Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxid Redox Signal 18(14):1753–1764

    PubMed  CAS  Google Scholar 

  • Walmrath D, Schneider T, Schermuly R, Olschewski H, Grimminger F, Seeger W (1996) Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med 153(3):991–996

    PubMed  CAS  Google Scholar 

  • Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, Verter J, Stoll BJ, Lemons JA, Papile LA, Shankaran S, Donovan EF, Oh W, Ehrenkranz RA, Fanaroff AA (2000) Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 105:14–20

    PubMed  CAS  Google Scholar 

  • Warner BB, Stuart LA, Papes RA, Wispe JR (1998) Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 275(1 Pt 1):L110–L117

    PubMed  CAS  Google Scholar 

  • Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187(4):424–432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wedgwood S, Steinhorn RH, Bunderson M, Wilham J, Lakshminrusimha S, Brennan LA, Black SM (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 289(4):L660–L666

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wichman CL, Moore KM, Lang TR, St Sauver JL, Heise RH Jr, Watson WJ (2009) Congenital heart disease associated with selective serotonin reuptake inhibitor use during pregnancy. Mayo Clin Proc 84(1):23–27

    PubMed Central  PubMed  Google Scholar 

  • Wilson KL, Zelig CM, Harvey JP, Cunningham BS, Dolinsky BM, Napolitano PG (2011) Persistent pulmonary hypertension of the newborn is associated with mode of delivery and not with maternal use of selective serotonin reuptake inhibitors. Am J Perinatol 28(1):19–24

    PubMed  Google Scholar 

  • Yee M, White RJ, Awad HA, Bates WA, McGrath-Morrow SA, O’Reilly MA (2011) Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Am J Pathol 178(6):2601–2610

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin H. Steinhorn M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Steinhorn, R.H. (2014). Persistent Pulmonary Hypertension of the Newborn. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics