Skip to main content

Anatomy, Physiology, and Pathophysiology of Renal Circulation

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

This chapter covers functional anatomy, physiology, and pathophysiology of the renal circulation. While insights about the anatomy of the renal vasculature have evolved some, the understanding of the physiology has improved substantially. Regarding glomerular filtration rate and renal blood flow, this chapter discusses the three levels of organization that can be recognized in renal physiology: first, principle driving forces of renal blood flow and glomerular filtration (based on the Starling forces); second, autoregulation, the system that stabilizes renal blood flow and glomerular filtration rate upon changes in renal perfusion pressure; and last, the neuroendocrine systems that connect systemic hemodynamics to the regulation of renal blood and glomerular filtration. Regarding pathophysiology, the basic derangements happening in renovascular hypertension, in diabetic nephropathy, in hypertensive renal injury, and in cardiorenal syndrome are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Angiotensin II:

A pleiotropic hormone with important actions on the renal function, formed by afferent and efferent arteriolar vasoconstriction, increased proximal and distal tubular reabsorption, and enhanced sensitivity of the tubuloglomerular feedback system.

Glomerulotubular balance:

The phenomenon describing the linear relationship between the amount of fluid and solutes delivered to a nephron segment and the amount of fluid and solutes reabsorbed.

Myogenic response:

The intrinsic property of the arterioles to respond to an increase in tangential (hoop) stress with a vasoconstriction, which contributes renal autoregulation.

Net ultrafiltration pressure:

The difference between the hydrostatic pressure gradient and the oncotic pressure difference over the glomerular capillary.

Renal autoregulation:

The stabilization of renal blood flow and glomerular filtration rate over a wide range of renal perfusion pressures.

Renal perfusion pressure:

The hydrostatic pressure difference between the renal artery and the renal vein.

Tubuloglomerular feedback system:

The feedback elicited by an increase in macula densa salt delivery, leading to the release of a substance, likely adenosine, that vasoconstricts the afferent arteriole and decreases glomerular filtration and thereby normalizes distal delivery to the macula densa.

References

  • Abildgaard U, Amtorp O, Agerskov K, Sjontoft E, Christensen NJ, Henriksen O (1987) Renal vascular adjustments to partial renal venous obstruction in dog kidney. Circ Res 61(2):194–202

    PubMed  CAS  Google Scholar 

  • Anand IS (2005) Pathogenesis of anemia in cardiorenal disease. Rev Cardiovasc Med 6(Suppl 3):S13–S21

    PubMed  Google Scholar 

  • Aukland K (1989) Myogenic mechanisms in the kidney. J Hypertens Suppl 7(4):S71–S76; discussion S77

    PubMed  CAS  Google Scholar 

  • Bakris GL, Weir MR (2000) Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med 160(5):685–693

    PubMed  CAS  Google Scholar 

  • Barajas L, Liu L, Powers K (1992) Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70(5):735–749

    PubMed  CAS  Google Scholar 

  • Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359(1449):1359–1366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430(6998):419–421

    PubMed  CAS  Google Scholar 

  • Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, Verhaar MC, Joles JA (2006) Tetrahydrobiopterin, but not l-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension 47(1):87–94

    PubMed  CAS  Google Scholar 

  • Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, the SHTNI (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. doi:10.1056/NEJMoa1402670

    PubMed  CAS  Google Scholar 

  • Bidani AK, Griffin KA (2004) Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension 44(5):595–601

    PubMed  CAS  Google Scholar 

  • Blantz RC, Pelayo JC (1984) A functional role for the tubuloglomerular feedback mechanism. Kidney Int 25(5):739–746

    PubMed  CAS  Google Scholar 

  • Bock JS, Gottlieb SS (2010) Cardiorenal syndrome: new perspectives. Circulation 121(23):2592–2600

    PubMed  Google Scholar 

  • Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26(1):11–17

    PubMed  Google Scholar 

  • Bouriquet N, Casellas D (1995) Interaction between cGMP-dependent dilators and autoregulation in rat preglomerular vasculature. Am J Physiol 268(2 Pt 2):F338–F346

    PubMed  CAS  Google Scholar 

  • Braam B (1994) The tubuloglomerular feedback system in physiology and pathophysiology university of utrecht. Thesis

    Google Scholar 

  • Braam B (1999) Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am J Physiol 276(6 Pt 2):R1551–R1561

    PubMed  CAS  Google Scholar 

  • Braam B, Koomans HA (1995a) Nitric oxide antagonizes the actions of angiotensin II to enhance tubuloglomerular feedback responsiveness. Kidney Int 48(5):1406–1411

    PubMed  CAS  Google Scholar 

  • Braam B, Koomans HA (1995b) Reabsorption of nitro-l-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int 47(5):1252–1257

    PubMed  CAS  Google Scholar 

  • Braam B, Verhaar MC (2007) Understanding eNOS for pharmacological modulation of endothelial function: a translational view. Curr Pharm Des 13(17):1727–1740

    PubMed  CAS  Google Scholar 

  • Braam B, Mitchell KD, Koomans HA, Navar LG (1993) Relevance of the tubuloglomerular feedback mechanism in pathophysiology. J Am Soc Nephrol 4(6):1257–1274

    PubMed  CAS  Google Scholar 

  • Braam B, Navar LG, Mitchell KD (1995) Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension. Hypertension 25(6):1232–1237

    PubMed  CAS  Google Scholar 

  • Braam B, Turkstra E, Koomans HA (2000) Concerted actions of renal endothelial and macula densa NO systems in the maintenance of extracellular fluid volume. Acta Physiol Scand 168(1):125–132. doi:10.1046/j.1365-201x.2000.00659.x

    PubMed  CAS  Google Scholar 

  • Braam B, Cupples WA, Joles JA, Gaillard C (2011) Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 17:161–175. doi:10.1007/s10741-011-9246-2

    Google Scholar 

  • Braam B, Cupples WA, Joles JA, Gaillard C (2012) Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 17(2):161–175. doi:10.1007/s10741-011-9246-2

    PubMed  Google Scholar 

  • Braam B, Joles JA, Danishwar AH, Gaillard CA (2014) Cardiorenal syndrome-current understanding and future perspectives. Nat Rev Nephrol 10(1):48–55. doi:10.1038/nrneph.2013.250

    PubMed  CAS  Google Scholar 

  • Briggs JP, Schnermann JB (1996) Whys and wherefores of juxtaglomerular apparatus function. Kidney Int 49(6):1724–1726

    PubMed  CAS  Google Scholar 

  • Brooks DP, DePalma PD, Pullen M, Elliott JD, Ohlstein EH, Nambi P (1998) SB 234551, a novel endothelin–A receptor antagonist, unmasks endothelin-induced renal vasodilatation in the dog. J Cardiovasc Pharmacol 31(Suppl 1):S339–S341

    PubMed  CAS  Google Scholar 

  • Brunkhorst R, Muller-Ott K, Gutsche HU, Niedermayer W (1978) Effect of furosemide, bumetanide and piretanide on the sensor of the tubuloglomerular feedback mechanism. Proc Eur Dial Transplant Assoc 15:613–616

    PubMed  CAS  Google Scholar 

  • Cannon B (1931) The effects of progressive sympathectomy on blood pressure. Am J Physiol 97(4):592–596

    Google Scholar 

  • Carmines PK, Morrison TK, Navar LG (1986) Angiotensin II effects on microvascular diameters of in vitro blood-perfused juxtamedullary nephrons. Am J Physiol 251(4 Pt 2):F610–F618

    PubMed  CAS  Google Scholar 

  • Carmines PK, Navar LG (1989) Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Am J Physiol 256(6 Pt 2):F1015–1020

    Google Scholar 

  • Casellas D, Navar LG (1984) In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol 246(3 Pt 2):F349–358

    PubMed  CAS  Google Scholar 

  • Castrop H, Schweda F, Mizel D, Huang Y, Briggs J, Kurtz A, Schnermann J (2004) Permissive role of nitric oxide in macula densa control of renin secretion. Am J Physiol Renal Physiol 286(5):F848–F857. doi:10.1152/ajprenal.00272.2003

    PubMed  CAS  Google Scholar 

  • Chilton L, Loutzenhiser K, Morales E, Breaks J, Kargacin GJ, Loutzenhiser R (2008) Inward rectifier K(+) currents and Kir2.1 expression in renal afferent and efferent arterioles. J Am Soc Nephrol 19(1):69–76. doi:10.1681/ASN.2007010039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chilton L, Smirnov SV, Loutzenhiser K, Wang X, Loutzenhiser R (2011) Segment-specific differences in the inward rectifier K(+) current along the renal interlobular artery. Cardiovasc Res 92(1):169–177. doi:10.1093/cvr/cvr179

    PubMed  CAS  Google Scholar 

  • Chon KH, Raghavan R, Chen YM, Marsh DJ, Yip KP (2005) Interactions of TGF-dependent and myogenic oscillations in tubular pressure. Am J Physiol Renal Physiol 288(2):F298–F307. doi:10.1152/ajprenal.00164.2004

    PubMed  CAS  Google Scholar 

  • Clausen G, Oien AH, Aukland K (1992) Myogenic vasoconstriction in the rat kidney elicited by reducing perirenal pressure. Acta Physiol Scand 144(3):277–290

    PubMed  CAS  Google Scholar 

  • Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    PubMed  CAS  Google Scholar 

  • Cohen AJ, Fray JC (1982) Calcium ion dependence of myogenic renal plasma flow autoregulation: evidence from the isolated perfused rat kidney. J Physiol 330:449–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327(27):1912–1918

    PubMed  Google Scholar 

  • Cupples WA (1993) Angiotensin II conditions the slow component of autoregulation of renal blood flow. Am J Physiol 264(3 Pt 2):F515–F522

    PubMed  CAS  Google Scholar 

  • Cupples WA, Braam B (2007) Assessment of renal autoregulation. Am J Physiol Renal Physiol 292(4):F1105–F1123

    PubMed  CAS  Google Scholar 

  • Cupples WA, Loutzenhiser RD (1998) Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney. Am J Physiol 275(1 Pt 2):F126–F130

    PubMed  CAS  Google Scholar 

  • Cupples WA, Wexler AS, Marsh DJ (1990) Model of TGF-­proximal tubule interactions in renal autoregulation. Am J Physiol 259(4 Pt2):F715–726

    Google Scholar 

  • Deen WM, Robertson CR, Brenner BM (1972) A model of glomerular ultrafiltration in the rat. Am J Physiol 223(5):1178–1183

    PubMed  CAS  Google Scholar 

  • Dijkhorst-Oei LT, Rabelink TJ, Boer P, Koomans HA (1997) Nifedipine attenuates systemic and renal vasoconstriction during nitric oxide inhibition in humans. Hypertension 29(5):1192–1198

    PubMed  CAS  Google Scholar 

  • Franco M, Bell PD, Navar LG (1988) Evaluation of prostaglandins as mediators of tubuloglomerular feedback. Am J Physiol 254(5 Pt 2):F642–F649

    PubMed  CAS  Google Scholar 

  • Ge Y, Murphy SR, Lu Y, Falck J, Liu R, Roman RJ (2013) Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins Other Lipid Mediat 102–103:42–48. doi:10.1016/j.prostaglandins.2013.03.001

    PubMed  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: I the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59(3):347–379

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gottschalk CW, Mylle M (1956) Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol 185(2):430–439

    PubMed  CAS  Google Scholar 

  • Griffin KA, Picken MM, Bidani AK (2004) Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int 65(1):209–218

    PubMed  Google Scholar 

  • Guyton AC, Cowley AW Jr, Fagard R, Langford HG, McCaa RE, DeClue JW, Coleman TG, Barnes GE (1974) Dynamic functions of angiotensin in hypertension: renal effects as the basic cause of chronic hypertension. Acta Physiol Lat Am 24(5):592–595

    PubMed  CAS  Google Scholar 

  • Harsing L, Biro J, Fonyo A, Daniel F (1957a) Effect of hypertonic solutions on renal blood flow and glomerular filtration rate. Acta Physiol Hung 12(4):341–349

    PubMed  CAS  Google Scholar 

  • Harsing L, Fonyodi S, Kabat M, Kover G (1957b) Effect of phlorizin and of mercurial diuretics on renal haemodynamics. Acta Physiol Hung 12(4):363–371

    PubMed  CAS  Google Scholar 

  • Hatamizadeh P, Fonarow GC, Budoff MJ, Darabian S, Kovesdy CP, Kalantar-Zadeh K (2013) Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat Rev Nephrol 9(2):99–111. doi:10.1038/nrneph.2012.279

    PubMed  CAS  Google Scholar 

  • Heller BI, Jarl BG (1949) The determination of renal blood flow and glomerular filtration with para-amino hippurate and mannitol. Am J Med Technol 15(3):143–150

    PubMed  CAS  Google Scholar 

  • Hermansson K, Kallskog O, Wolgast M (1984) Effect of renal nerve stimulation on the activity of the tubuloglomerular feedback mechanism. Acta Physiol Scand 120(3):381–385

    PubMed  CAS  Google Scholar 

  • Holm L, Morsing P, Casellas D, Persson AE (1990) Resetting of the pressure range for blood flow autoregulation in the rat kidney. Acta Physiologica Scandinavica 138(3):395–401

    PubMed  CAS  Google Scholar 

  • Imig JD, Roman RJ (1992) Nitric oxide modulates vascular tone in preglomerular arterioles. Hypertension 19(6 Pt 2):770–774

    PubMed  CAS  Google Scholar 

  • Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22(8):1429–1434. doi:10.1681/ASN.2010111143

    PubMed  PubMed Central  Google Scholar 

  • Iversen BM, Sekse I, Ofstad J (1987) Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am J Physiol 252(3 Pt 2):F480–486

    Google Scholar 

  • Johns EJ, Kopp UC, DiBona GF (2011) Neural control of renal function. Comp Physiol 1(2):731–767. doi:10.1002/cphy.c100043

    Google Scholar 

  • Just A, Arendshorst WJ (2003) Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am J Physiol Regul Integr Comp Physiol 285(3):R619–R631

    PubMed  Google Scholar 

  • Kaasjager KA, Shaw S, Koomans HA, Rabelink TJ (1997) Role of endothelin receptor subtypes in the systemic and renal responses to endothelin-1 in humans. J Am Soc Nephrol 8(1):32–39

    PubMed  CAS  Google Scholar 

  • Kastner PR, Hall JE, Guyton AC (1982) Renal hemodynamic responses to increased renal venous pressure: role of angiotensin II. Am J Physiol 243(3):F260–F264

    PubMed  CAS  Google Scholar 

  • Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348(2):101–108. doi:10.1056/NEJMoa020549

    PubMed  Google Scholar 

  • Kennedy-Lydon TM, Crawford C, Wildman SS, Peppiatt-Wildman CM (2013) Renal pericytes: regulators of medullary blood flow. Acta Physiol (Oxf) 207(2):212–225. doi:10.1111/apha.12026

    CAS  Google Scholar 

  • Kon V (1989) Neural control of renal circulation. Mineral and Electrolyte Metabol 15(1-­2):33–43

    Google Scholar 

  • Kopp UC, Olson LA, DiBona GF (1984) Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am J Physiol 246(1 Pt 2):F67–F77

    PubMed  CAS  Google Scholar 

  • Kramp R, Fourmanoir P, Caron N (2001) Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat. Am J Physiol Renal Physiol 281(6):F1132–F1140

    PubMed  CAS  Google Scholar 

  • Krijnen P, van Jaarsveld BC, Steyerberg EW, Man in ’t Veld AJ, Schalekamp MA, Habbema JD (1998) A clinical prediction rule for renal artery stenosis. Ann Intern Med 129(9):705–711

    Google Scholar 

  • Kriz W, Hosser H, Hahnel B, Simons JL, Provoost AP (1998) Development of vascular pole-­associated glomerulosclerosis in the Fawn-­hooded rat. J Am Soc Nephrol 9(3):381–396

    PubMed  CAS  Google Scholar 

  • Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281. doi:10.1016/S0140-6736(09)60566-3

    PubMed  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130(6):461–470

    PubMed  CAS  Google Scholar 

  • Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    PubMed  PubMed Central  Google Scholar 

  • Leyssac PP, Karlsen FM, Skott O (1991) Dynamics of intrarenal pressures and glomerular filtration rate after acetazolamide. Am J Physiol 261(1 Pt 2):F169–F178

    PubMed  CAS  Google Scholar 

  • Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, Wieneke GH, van Huffelen AC, Koomans HA (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340(17):1321–1328

    PubMed  CAS  Google Scholar 

  • Liu FY, Cogan MG (1988) Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest 82(2):601–607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loutzenhiser R, Epstein M (1985) Effects of calcium antagonists on renal hemodynamics. Am J Physiol 249(5 Pt 2):F619–F629

    PubMed  CAS  Google Scholar 

  • Loutzenhiser K, Loutzenhiser R (2000) Angiotensin II-induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca(2+) entry. Circ Res 87(7):551–557

    PubMed  CAS  Google Scholar 

  • Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90(12):1316–1324

    PubMed  CAS  Google Scholar 

  • Luyckx VA, Brenner BM (2005) Low birth weight, nephron number, and kidney disease. Kidney Int Suppl (97):S68-­77. doi:10.1111/j.1523-1755.2005.09712.x

    Google Scholar 

  • Machuca E, Benoit G, Antignac C (2009) Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 18(R2):R185–R194. doi:10.1093/hmg/ddp328

    PubMed  CAS  Google Scholar 

  • Majid DS, Navar LG (1992) Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol 262(1 Pt 2):F40–F46

    PubMed  CAS  Google Scholar 

  • Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, DeLucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC (2010) Rolofylline, an adenosine A1-­receptor antagonist, in acute heart failure. New England J Med 363(15):1419–1428. doi:10.1056/NEJMoa0912613

    Google Scholar 

  • Mitchell KD, Navar LG (1988) Enhanced tubuloglomerular feedback during peritubular infusions of angiotensins I and II. Am J Physiol 255(3 Pt 2):F383–F390

    PubMed  CAS  Google Scholar 

  • Mitchell KD, Braam B, Navar LG (1992) Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system. Hypertension 19(1 Suppl):I18–I27

    PubMed  CAS  Google Scholar 

  • Mortensen LH, Fink GD (1992) Salt-dependency of endothelin-induced, chronic hypertension in conscious rats. Hypertension 19(6 Pt 1):549–554

    PubMed  CAS  Google Scholar 

  • Navar LG (1998) Integrating multiple paracrine regulators of renal microvascular dynamics. Am J Physiol 274(3 Pt 2):F433–F444

    PubMed  CAS  Google Scholar 

  • Navar LG, Saccomani G, Mitchell KD (1991) Synergistic intrarenal actions of angiotensin on tubular reabsorption and renal hemodynamics. Am J Hypertens 4(1 Pt 1):90–96

    PubMed  CAS  Google Scholar 

  • Oien AH, Aukland K (1983) A mathematical analysis of the myogenic hypothesis with special reference to autoregulation of renal blood flow. Circ Res 52(3):241–252

    PubMed  CAS  Google Scholar 

  • Ohishi K, Carmines PK, Inscho EW, Navar LG (1992) EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Am J Physiol 263(5 Pt 2):F900–F906

    PubMed  CAS  Google Scholar 

  • Ono H, Kokubun H, Hashimoto K (1974) Abolition by calcium antagonists of the autoregulation of renal blood flow. Naunyn Schmiedebergs Arch Pharmacol 285(3):201–207

    PubMed  CAS  Google Scholar 

  • Pallone TL, Silldorff EP, Cheung JY (1998) Response of isolated rat descending vasa recta to bradykinin. Am J Physiol 274(3 Pt 2):H752–H759

    PubMed  CAS  Google Scholar 

  • Park F, Mattson DL, Roberts LA, Cowley AW Jr (1997) Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Physiol 273(5 Pt 2):R1742–R1748

    PubMed  CAS  Google Scholar 

  • Ploth DW, Roy RN, Huang WC, Navar LG (1980) Impaired autoregulatory responses in contralateral kidneys of two-­kidney, one-­clip hypertensive rats. Clin Sci (Lond) 59(Suppl 6):381s–384s

    Google Scholar 

  • Rabelink TJ, Kaasjager KA, Boer P, Stroes EG, Braam B, Koomans HA (1994) Effects of endothelin-1 on renal function in humans: implications for physiology and pathophysiology. Kidney Int 46(2):376–381

    PubMed  CAS  Google Scholar 

  • Racasan S, Joles JA, Boer P, Koomans HA, Braam B (2003) NO dependency of RBF and autoregulation in the spontaneously hypertensive rat. Am J Physiol Renal Physiol 285(1):F105–F112. doi:10.1152/ajprenal.00348.2002

    PubMed  CAS  Google Scholar 

  • Racasan S, Braam B, Koomans HA, Joles JA (2005) Programming blood pressure in adult SHR by shifting perinatal balance of NO and reactive oxygen species toward NO: the inverted Barker phenomenon. Am J Physiol Renal Physiol 288(4):F626–636

    PubMed  CAS  Google Scholar 

  • Robson JS, Ferguson MH et al (1949) The determination of the renal clearance of inulin in man. Q J Exp Physiol 35(2):111–134

    PubMed  CAS  Google Scholar 

  • Rector FC, Jr., Brunner FP, Seldin DW (1966) Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J Clin Invest 45(4):590–602. doi:10.1172/JCI105373

    PubMed  PubMed Central  Google Scholar 

  • Robertson CR, Deen WM, Troy JL, Brenner BM (1972) Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol 223(5):1191–1200

    PubMed  CAS  Google Scholar 

  • Roman RJ, Carmines PK, Loutzenhiser R, Conger JD (1991) Direct studies on the control of the renal microcirculation. J Am Soc Nephrol 2(2):136–149

    PubMed  CAS  Google Scholar 

  • Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52(19):1527–1539

    PubMed  Google Scholar 

  • Ronco C, McCullough PA, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House A, Katz NM, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P (2010) Cardiorenal syndromes: an executive summary from the consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 165:54–67. doi:10.1159/000313745

    PubMed  Google Scholar 

  • Rossi GP, Auchus RJ, Brown M, Lenders JW, Naruse M, Plouin PF, Satoh F, Young WF Jr (2014) An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 63(1):151–160. doi:10.1161/HYPERTENSIONAHA.113.02097

    PubMed  CAS  Google Scholar 

  • Schnermann J, Persson AE, Agerup B (1973) Tubuloglomerular feedback. Nonlinear relation between glomerular hydrostatic pressure and loop of henle perfusion rate. J Clin Invest 52(4):862–869. doi:10.1172/JCI107250

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol 258(3 Pt 2):F553–F561

    PubMed  CAS  Google Scholar 

  • Schnermann J, Traynor T, Yang T, Arend L, Huang YG, Smart A, Briggs JP (1998) Tubuloglomerular feedback: new concepts and developments. Kidney Int Suppl 67:S40–S45

    PubMed  CAS  Google Scholar 

  • Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139(3):587–596. doi:10.1016/j.cell.2009.08.045

    PubMed  CAS  Google Scholar 

  • Shenkman B, Einav Y (2014) Thrombotic thrombocytopenic purpura and other thrombotic microangiopathic hemolytic anemias: diagnosis and classification. Autoimmun Rev 13(4–5):584–586. doi:10.1016/j.autrev.2014.01.004

    PubMed  CAS  Google Scholar 

  • Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1,266 cases. JAMA 152(16):1501–1504

    CAS  Google Scholar 

  • Steinhausen M, Blum M, Fleming JT, Holz FG, Parekh N, Wiegman DL (1989) Visualization of renal autoregulation in the split hydronephrotic kidney of rats. Kidney Int 35(5):1151–1160

    PubMed  CAS  Google Scholar 

  • Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, Rossert J, Van Lente F, Bruce RD 3rd, Zhang YL, Greene T, Levey AS (2008) Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 51(3):395–406. doi:10.1053/j.ajkd.2007.11.018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98(17):9983–9988

    PubMed  CAS  PubMed Central  Google Scholar 

  • Symplicity HTNI, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909. doi:10.1016/S0140-6736(10)62039-9

    Google Scholar 

  • Szabo Z, Alachkar N, Xia J, Mathews WB, Rabb H (2011) Molecular imaging of the kidneys. Semin Nucl Med 41(1):20–28. doi:10.1053/j.semnuclmed.2010.09.003

    PubMed  PubMed Central  Google Scholar 

  • Takabatake T, Ise T, Ohta K, Kobayashi K (1991) Endothelin effects on renal function and tubuloglomerular feedback. Kidney Int Suppl 32:S122–S124

    PubMed  CAS  Google Scholar 

  • Takenaka T, Suzuki H, Okada H, Inoue T, Kanno Y, Ozawa Y, Hayashi K, Saruta T (2002) Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II. Kidney Int 62(2):558–565. doi:10.1046/j.1523-1755.2002.00484.x

    PubMed  CAS  Google Scholar 

  • Tamaki T, Hura CE, Kunau RT Jr (1989) Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors. Am J Physiol 256(3 Pt 2):H626–H629

    PubMed  CAS  Google Scholar 

  • Tamaki T, Hasui K, Aki Y, Kimura S, Abe Y (1993) Effects of NG-nitro-l-arginine on isolated rabbit afferent arterioles. Jpn J Pharmacol 62(3):231–237

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714(2):265–270

    PubMed  CAS  Google Scholar 

  • Thurau K, Schnermann J, Nagel W, Horster M, Wahl M (1967) Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus. Circ Res 21(1:Suppl 2):79–90

    PubMed  Google Scholar 

  • Tigerstedt R, Bergmann PG (1898) Niere und Kreislauf. Scand Arch Physiol 8:223–271

    Google Scholar 

  • Tracy RE, Velez-Duran M, Heigle T, Oalmann MC (1988) Two variants of nephrosclerosis separately related to age and blood pressure. Am J Pathol 131(2):270–282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tracy RE, Ishii T (2000) What is ‘nephrosclerosis’? Lessons from the US, Japan, and Mexico. Nephrol Dial Transplant 15(9):1357–1366

    PubMed  CAS  Google Scholar 

  • Tryggvason K (1999) Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol 10(11):2440–2445

    PubMed  CAS  Google Scholar 

  • Tryggvason K, Ruotsalainen V, Wartiovaara J (1999) Discovery of the congenital nephrotic syndrome gene discloses the structure of the mysterious molecular sieve of the kidney. Int J Dev Biol 43(5):445–451

    PubMed  CAS  Google Scholar 

  • Turkstra E, Braam B, Koomans HA (1998) Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. J Am Soc Nephrol 9(9):1596–1603

    PubMed  CAS  Google Scholar 

  • Turkstra E, Braam B, Koomans HA (2000) Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J Am Soc Nephrol 11(5):847–855

    PubMed  CAS  Google Scholar 

  • Vallon V, Blantz RC, Thomson S (2003) Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14(2):530–537

    PubMed  Google Scholar 

  • van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Boven E (2010) Targeted therapies in renal cell cancer: recent developments in imaging. Target Oncol 5(2):95–112. doi:10.1007/s11523-010-0146-5

    PubMed  PubMed Central  Google Scholar 

  • van Dokkum RP, Sun CW, Provoost AP, Jacob HJ, Roman RJ (1999) Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat. Am J Physiol 276(3 Pt 2):R855–R863

    PubMed  Google Scholar 

  • Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, Maki JH, Leiner T, Beek FJ, Korst MB, Flobbe K, de Haan MW, van Zwam WH, Postma CT, Hunink MG, de Leeuw PW, van Engelshoven JM, Renal Artery Diagnostic Imaging Study in Hypertension Study G (2004) Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141(9):674–682; discussion 682

    PubMed  Google Scholar 

  • Wang X, Ajikobi DO, Salevsky FC, Cupples WA (2000) Impaired myogenic autoregulation in kidneys of Brown Norway rats. Am J Physiol Renal Physiol 278(6):F962–969

    PubMed  CAS  Google Scholar 

  • Welch WJ, Wilcox CS (1988) Modulating role for thromboxane in the tubuloglomerular feedback response in the rat. J Clin Invest 81(6):1843–1849

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A 89(24):11993–11997

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yasujima M, Abe K, Kanazawa M, Yoshida K, Sato M, Takeuchi K, Tsunoda K, Kudo K, Kohzuki M, Omata K et al (1990) Calcium channel blockers reverse the sustained elevation of blood pressure induced by chronic infusion of endothelin in conscious rats. Tohoku J Exp Med 160(2):157–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Braam M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Braam, B., Yip, S., Cupples, W.A. (2014). Anatomy, Physiology, and Pathophysiology of Renal Circulation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_146-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics