Skip to main content

Grouping Active Contour Fragments for Object Recognition

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

In this paper, we try to address the challenging problem of combining local shape features to describe long and continuous shape characteristics. To this end, we firstly propose a novel type of local shape feature, namely Active Contour Fragment (ACF), to encode the shape deformation in a local region. An ACF is automatically learnt from the contours of a specific object class and capable to describe the intra-class shape characteristics based on the point distribution model. Secondly, we combine multiple ACFs into a group, namely Active Contour Group (ACG), to describe the long shape characteristics .We model the ACFs in an ACG using an undirected chain model and estimate the parameters of the chain model in a subspace for accelerating the learning and matching processes of ACGs. Finally, we discriminatively train the classifiers based on ACFs and ACGs in a boosting framework for localizing objects as well as delineating object boundaries. Both qualitative and quantitative evaluations show that our approach is capable of describing long shapes and the proposed recognition algorithm achieves promising performance on the public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. International Journal of Computer Vision 87, 284–303 (2010)

    Article  Google Scholar 

  2. Wang, X., Bai, X., Ma, T., Liu, W., Latecki, L.: Fan shape model for object detection. In: CVPR (2012)

    Google Scholar 

  3. Zheng, W., Liang, L.: Fast car detection using image strip features. In: CVPR (2009)

    Google Scholar 

  4. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. International Journal of Computer Vision 75, 247–266 (2007)

    Article  Google Scholar 

  5. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1270–1281 (2008)

    Article  Google Scholar 

  6. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 36–51 (2008)

    Article  Google Scholar 

  7. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  8. Srinivasan, P., Zhu, Q., Shi, J.: Many-to-one contour matching for describing and discriminating object shape. In: CVPR (2010)

    Google Scholar 

  9. Opelt, A., Pinz, A., Zisserman, A.: A Boundary-Fragment-Model for Object Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Bai, X., Wang, X., Latecki, L., Liu, W., Tu, Z.: Active skeleton for non-rigid object detection. In: ICCV (2009)

    Google Scholar 

  11. Ferrari, V., Tuytelaars, T., Van Gool, L.: Object Detection by Contour Segment Networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part III. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Toshev, A., Taskar, B., Daniilidis, K.: Object detection via boundary structure segmentation. In: CVPR (2010)

    Google Scholar 

  13. Eslami, S., Heess, N., Unit, G., Winn, J.: The shape boltzmann machine: a strong model of object shape. In: CVPR (2012)

    Google Scholar 

  14. Cootes, T., Taylor, C., Cooper, D., Graham, J., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  15. Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Planar object recognition using projective shape representation. International Journal of Computer Vision 16, 57–99 (1995)

    Article  Google Scholar 

  16. Lowe, D.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31, 355–395 (1987)

    Article  Google Scholar 

  17. Ming, Y., Li, H., He, X.: Connected contours: a new contour completion model that respects the closure effect. In: CVPR (2012)

    Google Scholar 

  18. Yang, X., Liu, H., Latecki, L.J.: Contour-based object detection as dominant set computation. In: ACCV (2010)

    Google Scholar 

  19. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 530–549 (2004)

    Article  Google Scholar 

  20. Suzuki, S., et al.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics and Image Processing 30, 32–46 (1985)

    Article  MATH  Google Scholar 

  21. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)

    Google Scholar 

  22. Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297–336 (1999)

    Article  MATH  Google Scholar 

  23. Zhu, Q., Yeh, M., Cheng, K., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR (2006)

    Google Scholar 

  24. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2188–2202 (2011)

    Article  Google Scholar 

  25. Everingham, M., Zisserman, A., Williams, C., Van Gool, L.: The pascal visual object classes challenge 2006 (voc 2006) results (2006)

    Google Scholar 

  26. Shotton, J., Blake, A., Cipolla, R.: Efficiently combining contour and texture cues for object recognition. In: BMVC (2008)

    Google Scholar 

  27. Yang, X., Latecki, L.J.: Weakly Supervised Shape Based Object Detection with Particle Filter. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 757–770. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Lu, C., Latecki, L., Adluru, N., Yang, X., Ling, H.: Shape guided contour grouping with particle filters. In: ICCV (2009)

    Google Scholar 

  29. Schlecht, J., Ommer, B.: Contour-based object detection. In: BMVC (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, W., Song, S., Chang, H., Chen, X. (2013). Grouping Active Contour Fragments for Object Recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics