Skip to main content

Thermal Chiral and Deconfining Transitions in the Presence of a Magnetic Background

  • Chapter
Strongly Interacting Matter in Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

We review the influence of a magnetic background on the phase diagram of strong interactions and how the chiral and deconfining transitions can be affected. First we summarize results for both transitions obtained in the framework of the linear sigma model coupled to quarks and to the Polyakov loop, and how they compare to other effective model approaches and to lattice QCD. Then we discuss the outcome of the magnetic MIT bag model that yields a behavior for the critical deconfining temperature which is compatible with recent lattice results and magnetic catalysis. The qualitative success of the magnetic MIT bag model hints to T c being a confinement-driven quantity, and leads us to the discussion of its behavior as predicted within the large-N c limit of QCD, which is also in line with the most recent lattice QCD results provided that quarks behave paramagnetically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Contrastingly, a significant decrease in the critical temperature as a function of B, vanishing at \(eB_{c}\sim25m_{\pi}^{2}\), was found in Ref. [43], featuring the disappearance of the confined phase at large magnetic fields. This phenomenon that was not reproduced by any other effective model nor observed on the lattice (even for much larger fields).

  2. 2.

    Higher-order (loop) corrections need the full propagator, not only its poles.

  3. 3.

    This will be a key feature in the discussion of recent results for the critical temperature, since T c seems to be a confinement-driven observable for both QCD transitions.

  4. 4.

    Of course, our description necessarily predicts a first-order transition, as usual with the MIT bag model, and our numbers should be taken as rough estimates, as is always the case in effective models.

References

  1. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  2. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    ADS  Google Scholar 

  3. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009)

    ADS  Google Scholar 

  4. D.E. Kharzeev, Nucl. Phys. A 830, 543C (2009)

    ADS  Google Scholar 

  5. D.E. Kharzeev, Ann. Phys. 325, 205 (2010)

    ADS  MATH  Google Scholar 

  6. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Nucl. Phys. A 836, 311 (2010)

    ADS  Google Scholar 

  7. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. Lett. 104, 212001 (2010)

    ADS  Google Scholar 

  8. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  9. V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011)

    ADS  Google Scholar 

  10. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    ADS  Google Scholar 

  11. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907 (2012)

    ADS  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, Statistical Physics – Course of Theoretical Physics, vol. 5 (Butterworth, Stoneham, 1984)

    Google Scholar 

  13. S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39, 3478 (1989)

    ADS  Google Scholar 

  14. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Lett. B 349, 477 (1995)

    ADS  Google Scholar 

  15. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

    ADS  Google Scholar 

  16. A.Y. Babansky, E.V. Gorbar, G.V. Shchepanyuk, Phys. Lett. B 419, 272 (1998)

    ADS  Google Scholar 

  17. K.G. Klimenko, arXiv:hep-ph/9809218

  18. G.W. Semenoff, I.A. Shovkovy, L.C.R. Wijewardhana, Phys. Rev. D 60, 105024 (1999)

    ADS  Google Scholar 

  19. A. Goyal, M. Dahiya, Phys. Rev. D 62, 025022 (2000)

    ADS  Google Scholar 

  20. B. Hiller, A.A. Osipov, A.H. Blin, J. da Providencia, SIGMA 4, 024 (2008)

    Google Scholar 

  21. A. Ayala, A. Sanchez, G. Piccinelli, S. Sahu, Phys. Rev. D 71, 023004 (2005)

    ADS  Google Scholar 

  22. A. Ayala, A. Bashir, A. Raya, E. Rojas, Phys. Rev. D 73, 105009 (2006)

    ADS  Google Scholar 

  23. E. Rojas, A. Ayala, A. Bashir, A. Raya, Phys. Rev. D 77, 093004 (2008)

    ADS  Google Scholar 

  24. A. Ayala, A. Bashir, A. Raya, A. Sanchez, Phys. Rev. D 80, 036005 (2009)

    ADS  Google Scholar 

  25. A. Ayala, A. Bashir, A. Raya, A. Sanchez, J. Phys. G 37, 015001 (2010)

    ADS  Google Scholar 

  26. A. Ayala, A. Bashir, E. Gutierrez, A. Raya, A. Sanchez, Phys. Rev. D 82, 056011 (2010)

    ADS  Google Scholar 

  27. J. Navarro, A. Sanchez, M.E. Tejeda-Yeomans, A. Ayala, G. Piccinelli, Phys. Rev. D 82, 123007 (2010)

    ADS  Google Scholar 

  28. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    MathSciNet  ADS  Google Scholar 

  29. I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402, 351 (1997)

    ADS  Google Scholar 

  30. N.O. Agasian, I.A. Shushpanov, Phys. Lett. B 472, 143 (2000)

    ADS  Google Scholar 

  31. T.D. Cohen, D.A. McGady, E.S. Werbos, Phys. Rev. C 76, 055201 (2007)

    ADS  Google Scholar 

  32. D. Kabat, K.M. Lee, E. Weinberg, Phys. Rev. D 66, 014004 (2002)

    ADS  Google Scholar 

  33. V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002)

    ADS  Google Scholar 

  34. E.J. Ferrer, V. de la Incera, C. Manuel, Phys. Rev. Lett. 95, 152002 (2005)

    ADS  Google Scholar 

  35. E.J. Ferrer, V. de la Incera, C. Manuel, Nucl. Phys. B 747, 88 (2006)

    ADS  Google Scholar 

  36. E.J. Ferrer, V. de la Incera, Phys. Rev. Lett. 97, 122301 (2006)

    ADS  Google Scholar 

  37. E.J. Ferrer, V. de la Incera, Phys. Rev. D 76, 045011 (2007)

    ADS  Google Scholar 

  38. E.J. Ferrer, V. de la Incera, Phys. Rev. D 76, 114012 (2007)

    ADS  Google Scholar 

  39. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008)

    ADS  Google Scholar 

  40. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007)

    ADS  Google Scholar 

  41. D.T. Son, M.A. Stephanov, Phys. Rev. D 77, 014021 (2008)

    ADS  Google Scholar 

  42. K.G. Klimenko, V.C. Zhukovsky, Phys. Lett. B 665, 352 (2008)

    ADS  Google Scholar 

  43. N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663, 445 (2008)

    ADS  Google Scholar 

  44. E.S. Fraga, A.J. Mizher, Phys. Rev. D 78, 025016 (2008)

    ADS  Google Scholar 

  45. E.S. Fraga, A.J. Mizher, Nucl. Phys. A 820, 103C (2009)

    ADS  Google Scholar 

  46. A.J. Mizher, E.S. Fraga, Nucl. Phys. A 831, 91 (2009)

    ADS  Google Scholar 

  47. A.J. Mizher, E.S. Fraga, M.N. Chernodub, PoS FACESQCD, 020 (2010)

    Google Scholar 

  48. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010)

    ADS  Google Scholar 

  49. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Perez Martinez, C. Providencia, Phys. Rev. C 79, 035807 (2009)

    ADS  Google Scholar 

  50. G.N. Ferrari, A.F. Garcia, M.B. Pinto, Phys. Rev. D 86, 096005 (2012)

    ADS  Google Scholar 

  51. J.K. Boomsma, D. Boer, Phys. Rev. D 81, 074005 (2010)

    ADS  Google Scholar 

  52. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010)

    ADS  Google Scholar 

  53. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010)

    ADS  Google Scholar 

  54. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)

    ADS  Google Scholar 

  55. R. Gatto, M. Ruggieri, arXiv:1207.3190 [hep-ph]

  56. C.V. Johnson, A. Kundu, J. High Energy Phys. 0812, 053 (2008)

    MathSciNet  ADS  Google Scholar 

  57. F. Preis, A. Rebhan, A. Schmitt, J. High Energy Phys. 1103, 033 (2011)

    ADS  Google Scholar 

  58. N. Callebaut, D. Dudal, H. Verschelde PoS FACESQCD, 046 (2010)

    Google Scholar 

  59. S.S. Avancini, D.P. Menezes, C. Providencia, Phys. Rev. C 83, 065805 (2011)

    ADS  Google Scholar 

  60. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providencia, Phys. Rev. D 85, 091901 (2012)

    ADS  Google Scholar 

  61. K. Kashiwa, Phys. Rev. D 83, 117901 (2011)

    ADS  Google Scholar 

  62. B. Chatterjee, H. Mishra, A. Mishra, Phys. Rev. D 84, 014016 (2011)

    ADS  Google Scholar 

  63. J.O. Andersen, R. Khan, Phys. Rev. D 85, 065026 (2012)

    ADS  Google Scholar 

  64. J.O. Andersen, A. Tranberg, J. High Energy Phys. 1208, 002 (2012)

    ADS  Google Scholar 

  65. J.O. Andersen, Phys. Rev. D 86, 025020 (2012)

    ADS  Google Scholar 

  66. J.O. Andersen, J. High Energy Phys. 1210, 005 (2012)

    ADS  Google Scholar 

  67. V. Skokov, Phys. Rev. D 85, 034026 (2012)

    ADS  Google Scholar 

  68. E.S. Fraga, L.F. Palhares, Phys. Rev. D 86, 016008 (2012)

    ADS  Google Scholar 

  69. K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86, 076013 (2012)

    ADS  Google Scholar 

  70. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)

    ADS  Google Scholar 

  71. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)

    ADS  Google Scholar 

  72. M.N. Chernodub, J. Van Doorsselaere, H. Verschelde, Phys. Rev. D 85, 045002 (2012)

    ADS  Google Scholar 

  73. M.N. Chernodub, Int. J. Mod. Phys. A 27, 1260003 (2012)

    ADS  Google Scholar 

  74. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Lett. B 682, 484 (2010)

    ADS  Google Scholar 

  75. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Nucl. Phys. B 826, 313 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  76. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80, 054503 (2009)

    ADS  Google Scholar 

  77. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)

    ADS  Google Scholar 

  78. M. D’Elia, F. Negro, Phys. Rev. D 83, 114028 (2011)

    ADS  Google Scholar 

  79. V.V. Braguta, P.V. Buividovich, M.N. Chernodub, M.I. Polikarpov, Phys. Lett. B 718, 667 (2012)

    ADS  Google Scholar 

  80. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, J. High Energy Phys. 1202, 044 (2012)

    ADS  Google Scholar 

  81. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012)

    ADS  Google Scholar 

  82. E.S. Fraga, L.F. Palhares, C. Villavicencio, Phys. Rev. D 79, 014021 (2009)

    ADS  Google Scholar 

  83. L.F. Palhares, E.S. Fraga, C. Villavicencio, Nucl. Phys. A 820, 287C (2009)

    ADS  Google Scholar 

  84. L.F. Palhares, Exploring the different phase diagrams of strong interactions. PhD Thesis, Federal University of Rio de Janeiro, 2012. arXiv:1208.0574v1 [hep-ph]

  85. E.S. Fraga, J. Noronha, L.F. Palhares, arXiv:1207.7094 [hep-ph]

  86. S. Chakrabarty, Phys. Rev. D 54, 1306 (1996)

    ADS  Google Scholar 

  87. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  88. M. Gell-Mann, M. Levy, Nuovo Cim. 16, 705 (1960)

    MathSciNet  MATH  Google Scholar 

  89. L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995)

    ADS  Google Scholar 

  90. A. Abada, J. Aichelin, Phys. Rev. Lett. 74, 3130 (1995)

    ADS  Google Scholar 

  91. A. Abada, M.C. Birse, Phys. Rev. D 55, 6887 (1997)

    ADS  Google Scholar 

  92. I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83, 3134 (1999)

    ADS  Google Scholar 

  93. O. Scavenius, A. Dumitru, Phys. Rev. Lett. 83, 4697 (1999)

    ADS  Google Scholar 

  94. H.C.G. Caldas, A.L. Mota, M.C. Nemes, Phys. Rev. D 63, 056011 (2001)

    ADS  Google Scholar 

  95. O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C 64, 045202 (2001)

    ADS  Google Scholar 

  96. O. Scavenius, A. Dumitru, E.S. Fraga, J.T. Lenaghan, A.D. Jackson, Phys. Rev. D 63, 116003 (2001)

    ADS  Google Scholar 

  97. K. Paech, H. Stoecker, A. Dumitru, Phys. Rev. C 68, 044907 (2003)

    ADS  Google Scholar 

  98. K. Paech, A. Dumitru, Phys. Lett. B 623, 200 (2005)

    ADS  Google Scholar 

  99. A. Mocsy, I.N. Mishustin, P.J. Ellis, Phys. Rev. C 70, 015204 (2004)

    ADS  Google Scholar 

  100. C.E. Aguiar, E.S. Fraga, T. Kodama, J. Phys. G 32, 179 (2006)

    Google Scholar 

  101. B.J. Schaefer, J. Wambach, Phys. Rev. D 75, 085015 (2007)

    ADS  Google Scholar 

  102. B.G. Taketani, E.S. Fraga, Phys. Rev. D 74, 085013 (2006)

    ADS  Google Scholar 

  103. E.S. Fraga, G. Krein, Phys. Lett. B 614, 181 (2005)

    ADS  Google Scholar 

  104. R.D. Pisarski, Phys. Rev. D 62, 111501 (2000)

    ADS  Google Scholar 

  105. A. Dumitru, R.D. Pisarski, Phys. Lett. B 504, 282 (2001)

    ADS  MATH  Google Scholar 

  106. A. Dumitru, R.D. Pisarski, Nucl. Phys. A 698, 444 (2002)

    ADS  Google Scholar 

  107. O. Scavenius, A. Dumitru, A.D. Jackson, Phys. Rev. Lett. 87, 182302 (2001)

    ADS  Google Scholar 

  108. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    ADS  Google Scholar 

  109. S. Roessner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007)

    ADS  Google Scholar 

  110. S. Roessner, T. Hell, C. Ratti, W. Weise, Nucl. Phys. A 814, 118 (2008)

    ADS  Google Scholar 

  111. I.A. Shovkovy, arXiv:1207.5081 [hep-ph]

  112. D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003)

    ADS  MATH  Google Scholar 

  113. T. Vachaspati, Phys. Lett. B 265, 258 (1991)

    ADS  Google Scholar 

  114. M. Teper, PoS LATTICE2008, 022 (2008)

    Google Scholar 

  115. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, B. Petersson, Nucl. Phys. B 469, 419 (1996)

    ADS  Google Scholar 

  116. B. Lucini, M. Teper, U. Wenger, Phys. Lett. B 545, 197 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  117. B. Lucini, M. Teper, U. Wenger, J. High Energy Phys. 01, 061 (2004)

    MathSciNet  ADS  Google Scholar 

  118. K. Holland, M. Pepe, U.-J. Wiese, Nucl. Phys. B 694, 35 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  119. B. Lucini, M. Teper, U. Wenger, Nucl. Phys. B, Proc. Suppl. 129–130, 712 (2004)

    Google Scholar 

  120. M. Pepe, Nucl. Phys. B, Proc. Suppl. 141, 238 (2005)

    ADS  Google Scholar 

  121. B. Lucini, M. Teper, U. Wenger, J. High Energy Phys. 0502, 033 (2005)

    MathSciNet  ADS  Google Scholar 

  122. S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 1207, 056 (2012)

    ADS  Google Scholar 

  123. B. Lucini, A. Rago, E. Rinaldi, Phys. Lett. B 712, 279 (2012)

    ADS  Google Scholar 

  124. B. Bringoltz, M. Teper, Phys. Lett. B 628, 113 (2005)

    ADS  Google Scholar 

  125. S. Datta, S. Gupta, Nucl. Phys. A 830, 749c (2009)

    ADS  Google Scholar 

  126. M. Panero, Phys. Rev. Lett. 103, 232001 (2009)

    ADS  Google Scholar 

  127. N.O. Agasian, Phys. Lett. B 488, 39 (2000)

    ADS  Google Scholar 

  128. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    MathSciNet  ADS  MATH  Google Scholar 

  129. A. Chodos, K. Everding, D.A. Owen, Phys. Rev. D 42, 2881 (1990)

    ADS  Google Scholar 

  130. K. Fukushima, Phys. Rev. D 83, 111501 (2011)

    ADS  Google Scholar 

  131. J.-P. Blaizot, E.S. Fraga, L.F. Palhares, Phys. Lett. B 722, 167 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank the editors of this volume of Lecture Notes in Physics for the invitation to contribute to this special edition. The discussion presented here in part summarizes work done in collaboration with M.N. Chernodub, A.J. Mizher, J. Noronha and L.F. Palhares to whom I am deeply grateful. I am especially indebted to my former students A.J. Mizher and L.F. Palhares, from whom I have learnt so much over several years. I also thank J.-P. Blaizot, M. D’Elia and G. Endrodi for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Fraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fraga, E.S. (2013). Thermal Chiral and Deconfining Transitions in the Presence of a Magnetic Background. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_5

Download citation

Publish with us

Policies and ethics