Skip to main content

Strategies for Connecting Imbituba and Santana Brazilian Datums Based on Satellite Gravimetry and Residual Terrain Model

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 139))

Abstract

Due to the challenge that the Amazon Basin imposes for traditional geodetic surveys, the Brazilian Fundamental Vertical Network (BFVN) is materialized in two independent parts: the southern segment is linked to the Imbituba tide gauge and the northern part is linked to the Santana tide gauge. The mouth of the Amazon River and its surrounding wetlands generate a large area without access for spirit levelling and conventional gravimetry. There is a minimum distance of about 330 km between the nearest bench marks of the two above mentioned vertical networks. Nowadays, satellite gravity missions such as CHAMP, GRACE and GOCE make it possible to explore new solutions based on Global Geopotential Models (GGMs) obtained from satellite data only. Digital Elevation Models (DEMs) allow an improvement in the spectral resolution of the GGMs based on Residual Terrain Modelling (RTM). Such an approach is an alternative to filling the information gaps in the GGMs by reducing omission errors. The spectral improvement of the GGMs allows us to integrate the vertical datums in a more realistic way, and with a reduction of terrestrial gravity dependency. In this study, two alternatives to the indirect connection of the BFVN are analyzed. A solution is based on a combination of GGM satellite-only data from the GOCE mission and the spectral contribution of the RTM. The other solution is based on the integration of information from GOCE GGM, EGM2008 and the RTM effect. The offset obtained shows that the Imbituba datum is located 1.32 and 1.43 m below the Santana datum for the solutions GGMGOCE+RTM and GGMGOCE+EGM2008+RTM respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elmotaal HA, Kühtreiber N (2003) Geoid determination using adapted reference field, seismic Moho depths and variable density contrast. J Geod 77:77–85

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Bursa M, Kouba J, Muller A, Radej K, True SA, Vatrt V, Vojtiskova M (2001) Determination of geopotential differences between local vertical datums and realization of a world height system. Stud Geophys Geodaetica 45(2):127–132

    Article  Google Scholar 

  • Dahl OC, Forsberg R (1998) Geoid models around Sognefjord using depth data. J Geod 72(9):547–556

    Article  Google Scholar 

  • Daho SAB, Mendas A, Fairhead JD, Derkaoui A (2009) Impact of the new GRACE geopotential model and SRTM data on the geoid modelling in Algeria. J Geodyn 47(2–3):63–71

    Article  Google Scholar 

  • Featherstone WE (2002) Vertical reference systems. In: Drewes P, Dodson A, Fortes LP, Sanchez L, Sandoval P (eds) Attempts to unify the Australian height datum between the mainland and Tasmania. IAG symposia, vol 124. Springer, Berlin, pp 1–6

    Google Scholar 

  • Flury J (2006) Short-wavelength spectral properties of the gravity field from a range of regional data sets. J Geod 79(10–11):624–640

    Article  Google Scholar 

  • Flury J, Rummel R (2004) Future satellite gravimetry for geodesy. Earth Moon Planets 94(1–2):13–29

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Rep. 355. Dept. of Geod. Sci. and Surv., Ohio State Univ., Columbus

    Google Scholar 

  • Forsberg R (1993) Modeling the fine-structure of the geoid-methods, data requirements and some results. Surv Geophys 14(4–5):403–418

    Article  Google Scholar 

  • Forsberg R, Tscherning C (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86(B9):7843–7854

    Article  Google Scholar 

  • Fotopoulos G, Kotsakis C, Sideris MG (2003) How accurately can we determine orthometric heights from GPS and geoid data? J Surv Eng 129(1):1–10

    Article  Google Scholar 

  • Ferreira V, de Freitas SRC, Heck B (2011) A separação entre o geoide e o quase geoide: uma analise no contexto Brasileiro. Revista Brasileira de Cartografia. No. 63. Edição Especial 40 Anos

    Google Scholar 

  • Gruber T (2009) Evaluation of the EGM2008 gravity field by means of GPS-leveling and sea surface topography solutions: external evaluation reports of EGM08. Newton’s Bull 4:3–17

    Google Scholar 

  • Heck B, Rummel R (1989) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. Sea surface topography and the geoid. Springer, Berlin, pp 116–128

    Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. W. H. Freeman and Co., San Francisco

    Google Scholar 

  • Hirt C, Featherstone WE, Marti M (2010a) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84:557–567

    Article  Google Scholar 

  • Hirt C (2010) Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. J Geod 84:179–190

    Article  Google Scholar 

  • Hirt C, Marti U, Bürki B, Featherstone WE (2010b) Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. J Geophys Res 115:B10404

    Article  Google Scholar 

  • Kiamehr J, Sjöberg LE (2005) Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. J Geod 79:540–551

    Article  Google Scholar 

  • Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geod 73:412–421

    Article  Google Scholar 

  • Lysaker DI, Omang OCD, Pettersen BR, Solheim D (2007) Quasigeoid evaluation with improved leveled height data for Norway. J Geod 81:617–627

    Article  Google Scholar 

  • Luz RT, de Freitas SRC, Heck B, Bosch W (2009) Challenges and first results towards the realization of a consistent height system in Brazil. In: International IAG/FIG symposium GRF2009, Geodetic reference frames, Munich

    Google Scholar 

  • Martin A, Anquela AB, Padin J, Berne JL (2010) Ability of the EGM2008 high degree geopotential model to calculate a local geoid model in Valencia, Eastern Spain. Stud Geophys Geodaetica 54(3):347–366

    Article  Google Scholar 

  • Newton’s Bulletin (2009) Newton’s bulletin issue n°4, April 2009. Publication of the International Association of Geodesy and International Gravity Field Service, ISSN 1810-8555

    Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proc. of the 1st international symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Istanbul, pp 318–323 (special issue 18)

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. Presented at the 2008 general assembly of the European Geoscience Union, Vienna, 13–18 April

    Google Scholar 

  • Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498

    Article  Google Scholar 

  • Rummel R (2000) Global integrated geodetic and geodynamic observing system (GIGGOS). In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS), IAG symposia, vol 120. Springer, Berlin, pp 253–260

    Google Scholar 

  • Schrama EJO (2003) Error characteristics estimated from CHAMP, GRACE and GOCE derived geoids and from satellite altimetry derived mean dynamic topography. Space Sci Rev 108(1–2):179–193

    Article  Google Scholar 

  • Sideris MG, Rangelova E, Rummel R, Gerlach C, Gruber T, Woodworth P, Hughes C, Ihde J, Liebsch G (2011) World height system unification and GOCE. In: 2011 IUGG general assembly, Melbourne, 28 June–7 July

    Google Scholar 

  • Tscherning CC (2001) Geoid determination after the first satellite gravity missions. Festschrift Univ. Prof. em. Dr.-Ing. Wolfgang Torge zum 70. Geburtstag. Wiss. Arb. Fachr. Verm. wesen Univ. Hannover, Nr. 241, pp 11–24

    Google Scholar 

  • Vanícek P, Krakiwsky EJ (1986) Geodesy: the concepts. North Holland, Amsterdam

    Google Scholar 

  • Voigt C, Rülke A, Denker H, Ihde J, Liebsch G (2010) Validation of GOCE products by terrestrial data sets in Germany. Geotechnologien Science Rep. 17, Observation of the system Earth from space, Status seminar, 04 October

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry D. Montecino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montecino, H.D., de Freitas, S.R.C. (2014). Strategies for Connecting Imbituba and Santana Brazilian Datums Based on Satellite Gravimetry and Residual Terrain Model. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_72

Download citation

Publish with us

Policies and ethics